blob: 07d1f1f702c4df5ca2a8f7b43bc25af5005a462a [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/functions/NEPoolingLayer.h"
#include "arm_compute/runtime/Tensor.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "tests/NEON/Accessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/PoolingLayerDataset.h"
#include "tests/datasets/PoolingTypesDataset.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/PoolingLayerFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
/** Input data sets for float data types */
const auto PoolingLayerDatasetFP = combine(combine(combine(datasets::PoolingTypes(), framework::dataset::make("PoolingSize", { Size2D(2, 2), Size2D(3, 3), Size2D(7, 7), Size2D(3, 7), Size2D(7, 8) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 1, 0, 0), PadStrideInfo(1, 2, 1, 1), PadStrideInfo(2, 2, 1, 0) })),
framework::dataset::make("ExcludePadding", { true, false }));
const auto PoolingLayerDatasetFPSmall = combine(combine(combine(datasets::PoolingTypes(), framework::dataset::make("PoolingSize", { Size2D(2, 2), Size2D(3, 3) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 1, 0, 0), PadStrideInfo(2, 1, 0, 0) })),
framework::dataset::make("ExcludePadding", { true, false }));
/** Input data sets for asymmetric data type */
const auto PoolingLayerDatasetQASYMM8 = combine(combine(combine(framework::dataset::make("PoolingType", { PoolingType::MAX, PoolingType::AVG }), framework::dataset::make("PoolingSize", { Size2D(2, 2), Size2D(3, 3), Size2D(3, 7), Size2D(7, 8) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 1, 0, 0), PadStrideInfo(1, 2, 1, 1), PadStrideInfo(2, 2, 1, 0) })),
framework::dataset::make("ExcludePadding", { true }));
const auto PoolingLayerDatasetQASYMM8Small = combine(combine(combine(framework::dataset::make("PoolingType", { PoolingType::MAX, PoolingType::AVG }), framework::dataset::make("PoolingSize", { Size2D(2, 2), Size2D(3, 7) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 1, 0, 0), PadStrideInfo(1, 2, 1, 1) })),
framework::dataset::make("ExcludePadding", { true }));
constexpr AbsoluteTolerance<float> tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for float types */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
constexpr AbsoluteTolerance<float> tolerance_f16(0.01f); /**< Tolerance value for comparing reference's output against implementation's output for float types */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
constexpr AbsoluteTolerance<uint8_t> tolerance_qasymm8(1); /**< Tolerance value for comparing reference's output against implementation's output for unsigned 8-bit asymmetric type */
constexpr AbsoluteTolerance<int8_t> tolerance_qasymm8_s(1); /**< Tolerance value for comparing reference's output against implementation's output for signed 8-bit asymmetric type */
const auto pool_data_layout_dataset = framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC });
} // namespace
TEST_SUITE(NEON)
TEST_SUITE(PoolingLayer)
// *INDENT-OFF*
// clang-format off
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching data type
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Window shrink
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid pad/size combination
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid pad/size combination
TensorInfo(TensorShape(15U, 13U, 5U), 1, DataType::F32), // Non-rectangular Global Pooling
TensorInfo(TensorShape(13U, 13U, 5U), 1, DataType::F32), // Invalid output Global Pooling
TensorInfo(TensorShape(13U, 13U, 5U), 1, DataType::F32),
}),
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(25U, 11U, 2U), 1, DataType::F16),
TensorInfo(TensorShape(25U, 10U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(25U, 16U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(1U, 1U, 5U), 1, DataType::F32),
TensorInfo(TensorShape(2U, 2U, 5U), 1, DataType::F32),
TensorInfo(TensorShape(25U, 11U, 2U), 1, DataType::F32),
})),
framework::dataset::make("PoolInfo", { PoolingLayerInfo(PoolingType::AVG, 3, DataLayout::NCHW, PadStrideInfo(1, 1, 0, 0)),
PoolingLayerInfo(PoolingType::AVG, 3, DataLayout::NCHW, PadStrideInfo(1, 1, 0, 0)),
PoolingLayerInfo(PoolingType::AVG, 2, DataLayout::NCHW, PadStrideInfo(1, 1, 2, 0)),
PoolingLayerInfo(PoolingType::AVG, 2, DataLayout::NCHW, PadStrideInfo(1, 1, 0, 2)),
PoolingLayerInfo(PoolingType::AVG, DataLayout::NCHW),
PoolingLayerInfo(PoolingType::MAX, DataLayout::NCHW),
PoolingLayerInfo(PoolingType::AVG, DataLayout::NCHW),
})),
framework::dataset::make("Expected", { false, false, false, false, true, false, false, true })),
input_info, output_info, pool_info, expected)
{
bool is_valid = bool(NEPoolingLayer::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), pool_info));
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
// clang-format on
// *INDENT-ON*
template <typename T>
using NEPoolingLayerFixture = PoolingLayerValidationFixture<Tensor, Accessor, NEPoolingLayer, T>;
template <typename T>
using NESpecialPoolingLayerFixture = SpecialPoolingLayerValidationFixture<Tensor, Accessor, NEPoolingLayer, T>;
TEST_SUITE(Float)
TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(RunSpecial, NESpecialPoolingLayerFixture<float>, framework::DatasetMode::ALL, datasets::PoolingLayerDatasetSpecial() * framework::dataset::make("DataType", DataType::F32))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall, NEPoolingLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), combine(PoolingLayerDatasetFPSmall,
framework::dataset::make("DataType",
DataType::F32))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEPoolingLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapes(), combine(PoolingLayerDatasetFP,
framework::dataset::make("DataType",
DataType::F32))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_f32);
}
TEST_SUITE_END() // FP32
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_SUITE(FP16)
FIXTURE_DATA_TEST_CASE(RunSmall, NEPoolingLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), combine(PoolingLayerDatasetFPSmall,
framework::dataset::make("DataType", DataType::F16))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_f16);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEPoolingLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapes(), combine(PoolingLayerDatasetFP,
framework::dataset::make("DataType", DataType::F16))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_f16);
}
TEST_SUITE_END() // FP16
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
TEST_SUITE_END() // Float
TEST_SUITE(Quantized)
template <typename T>
using NEPoolingLayerQuantizedFixture = PoolingLayerValidationQuantizedFixture<Tensor, Accessor, NEPoolingLayer, T>;
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(RunSmall, NEPoolingLayerQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), combine(PoolingLayerDatasetQASYMM8Small,
framework::dataset::make("DataType", DataType::QASYMM8))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QASYMM8
TEST_SUITE(QASYMM8_SIGNED)
FIXTURE_DATA_TEST_CASE(RunSmall, NEPoolingLayerQuantizedFixture<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), combine(PoolingLayerDatasetQASYMM8Small,
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED))),
pool_data_layout_dataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8_s);
}
TEST_SUITE_END() // QASYMM8_SIGNED
TEST_SUITE_END() // Quantized
TEST_SUITE_END() // PoolingLayer
TEST_SUITE_END() // NEON
} // namespace validation
} // namespace test
} // namespace arm_compute