blob: da7a1e74105943f9cd615cfc5f3d653661f52e8c [file] [log] [blame]
/*
* Copyright (c) 2016-2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#undef CONVERT_SAT
#define ADD_OP(a, b) ((a) + (b))
#define MUL_OP(a, b) ((a) * (b))
#define CONVERT_SAT(a, b) ((a))
#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
#if STRIDE_X == 1
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X == 2 */
#define CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 3) \
weights_values0 = vload3(0, weights_row_ptr); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src0 = vload8(0, src_row_ptr); \
VEC_DATA_TYPE(DATA_TYPE, 2) \
src1 = vload2(0, src_row_ptr + 8); \
\
acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \
})
#define CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 3) \
weights_values0 = vload3(0, weights_row_ptr); \
VEC_DATA_TYPE(DATA_TYPE, 16) \
src0 = vload16(0, src_row_ptr); \
DATA_TYPE src1 = *(src_row_ptr + 16); \
\
acc = ADD_OP(acc, MUL_OP(src0.even, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \
})
#if defined(DATA_LAYOUT_NHWC)
#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))
#if STRIDE_X == 1
#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr)
#else /* STRIDE_X not equals 1 or 2 */
#error "STRIDE_X larger than 2 is not supported"
#endif /* STRIDE_X == 2 */
#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 2) \
src1 = (VEC_DATA_TYPE(DATA_TYPE, 2))( \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 3) \
weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \
PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \
acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \
}
#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr) \
{ \
VEC_DATA_TYPE(DATA_TYPE, 16) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \
DATA_TYPE src1 = PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE); \
VEC_DATA_TYPE(DATA_TYPE, 3) \
weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \
PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \
\
acc = ADD_OP(acc, MUL_OP(src0.s02468ACE, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \
acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \
}
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note This OpenCL kernel works with stride_x = 1 and 2
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution3x3_nhwc(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)
values0 = 0;
const int id0 = get_global_id(0);
const int id1 = get_global_id(1);
const int id2 = get_global_id(2);
__global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;
weights_addr += id0 * weights_stride_w;
const int coordy = ((id2 * STRIDE_Y) - PAD_TOP);
for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
{
#if PAD_TOP > 0
if(coordy < 0) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (int)src_stride_z, (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (int)src_stride_z, (weights_addr + 2 * (int)weights_stride_z));
}
else if(coordy == (SRC_HEIGHT - PAD_TOP - 1))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (int)src_stride_z, (weights_addr + 1 * (int)weights_stride_z));
}
else
{
CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (int)src_stride_z, (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (int)src_stride_z, (weights_addr + 2 * (int)weights_stride_z));
}
#else // PAD_TOP > 0
CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (int)src_stride_z, (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (int)src_stride_z, (weights_addr + 2 * (int)weights_stride_z));
#endif // PAD_TOP > 0
src_addr += src_stride_x;
weights_addr += weights_stride_x;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
values0 = ADD_OP(values0, (VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, id0))));
#endif /* defined(HAS_BIAS) */
*((__global DATA_TYPE *)(dst.ptr + 0 * dst_stride_y)) = values0.s0;
*((__global DATA_TYPE *)(dst.ptr + 1 * dst_stride_y)) = values0.s1;
*((__global DATA_TYPE *)(dst.ptr + 2 * dst_stride_y)) = values0.s2;
*((__global DATA_TYPE *)(dst.ptr + 3 * dst_stride_y)) = values0.s3;
*((__global DATA_TYPE *)(dst.ptr + 4 * dst_stride_y)) = values0.s4;
*((__global DATA_TYPE *)(dst.ptr + 5 * dst_stride_y)) = values0.s5;
*((__global DATA_TYPE *)(dst.ptr + 6 * dst_stride_y)) = values0.s6;
*((__global DATA_TYPE *)(dst.ptr + 7 * dst_stride_y)) = values0.s7;
}
#endif // defined(DATA_LAYOUT_NHWC)
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note This OpenCL kernel works with stride_x = 1 and 2
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution3x3(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)
values0 = 0;
__global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0);
const int kernel_index = get_global_id(2);
weights_addr += kernel_index * weights_stride_w;
for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
{
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 0 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y));
CONVOLUTION1x3(values0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y));
src_addr += src_stride_z;
weights_addr += weights_stride_z;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
values0 = ADD_OP(values0, (VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, kernel_index))));
#endif /* defined(HAS_BIAS) */
vstore8(CONVERT_SAT(values0, VEC_DATA_TYPE(DATA_TYPE, 8)), 0, (__global DATA_TYPE *)dst.ptr);
}
#endif //defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
#if defined(WEIGHTS_DEPTH)
#define CONVOLUTION1x3_BIFROST(acc, src0, src1, weights_row0) \
({ \
acc.s0 = mad(src0.s0, weights_row0.s0, acc.s0); \
acc.s1 = mad(src0.s1, weights_row0.s0, acc.s1); \
acc.s2 = mad(src0.s2, weights_row0.s0, acc.s2); \
acc.s3 = mad(src0.s3, weights_row0.s0, acc.s3); \
acc.s0 = mad(src0.s1, weights_row0.s1, acc.s0); \
acc.s1 = mad(src0.s2, weights_row0.s1, acc.s1); \
acc.s2 = mad(src0.s3, weights_row0.s1, acc.s2); \
acc.s3 = mad(src1.s0, weights_row0.s1, acc.s3); \
acc.s0 = mad(src0.s2, weights_row0.s2, acc.s0); \
acc.s1 = mad(src0.s3, weights_row0.s2, acc.s1); \
acc.s2 = mad(src1.s0, weights_row0.s2, acc.s2); \
acc.s3 = mad(src1.s1, weights_row0.s2, acc.s3); \
})
/** An optimized direct convolution 3x3 OpenCL kernel for Bifrost architectures when the data type is F32
*
* @note This OpenCL kernel works only with stride_x and stride_y equal to 1
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note In case biases, -DHAS_BIAS must to be passed at compile
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution3x3_f32_bifrost(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
// Get the kernel index
const int kernel_index = get_global_id(2);
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
float4 values0 = 0;
float4 values1 = 0;
float4 values2 = 0;
__global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0);
// Note: Since each work-item computes 4x3 elements, we need to load 5 rows from the input tensor
for(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)
{
// Load the weights
float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
float4 src0;
float2 src1;
// Load values from row0 of input tensor
src0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
src1 = vload2(0, (__global float *)(src_addr + 0 * src_stride_y) + 4);
CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row0);
// Load values from row1 of input tensor
src0 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
src1 = vload2(0, (__global float *)(src_addr + 1 * src_stride_y) + 4);
// Accumulate
CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row1);
CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row0);
// Load values from row2 of input tensor
src0 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
src1 = vload2(0, (__global float *)(src_addr + 2 * src_stride_y) + 4);
// Accumulate
CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row2);
CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row1);
CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row0);
// Load values from row3 of input tensor
src0 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
src1 = vload2(0, (__global float *)(src_addr + 3 * src_stride_y) + 4);
// Accumulate
CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row2);
CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row1);
// Row4
src0 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y));
src1 = vload2(0, (__global float *)(src_addr + 4 * src_stride_y) + 4);
// Accumulate
CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row2);
src_addr += src_stride_z;
weights_addr += weights_stride_z;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
float bias = (float) * ((__global float *)(vector_offset(&biases, kernel_index)));
values0 += (float4)bias;
values1 += (float4)bias;
values2 += (float4)bias;
#endif /* defined(HAS_BIAS) */
vstore4(values0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
vstore4(values1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
vstore4(values2, 0, (__global float *)(dst.ptr + 2 * dst_stride_y));
}
#endif // defined(WEIGHTS_DEPTH)