blob: b0bd3381471fdcb4de115e2a3253174db13333f0 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(SATURATE)
#define CONVERT_OP_INT_STR(x, type, size) (convert_##type##size##_sat(x))
#else // SATURATE
#define CONVERT_OP_INT_STR(x, type, size) (convert_##type##size(x))
#endif // SATURATE
#define CONVERT_OP_INT(x, type, size) CONVERT_OP_INT_STR(x, type, size)
#define MUL_OP(x, y, scale, type, size) CONVERT_OP_INT((x) * (y) >> scale, type, size)
#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)
#if defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT)
/** Performs a pixelwise multiplication with integer scale of integer inputs.
*
* @attention The inputs and output data types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT:
* e.g. -DDATA_TYPE_IN1=uchar -DDATA_TYPE_IN2=ushort -DDATA_TYPE_OUT=short
* @attention The data_type of the intermediate result of the multiplication should passed as well using -DACC_DATA_TYPE.
* e.g. If one of inputs is S16 -DACC_DATA_TYPE=int should be passed else -DACC_DATA_TYPE=short.
*
* @param[in] in1_ptr Pointer to the source image. Supported data types: U8/S16
* @param[in] in1_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] in2_ptr Pointer to the source image. Supported data types: same as @p in1_ptr
* @param[in] in2_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in1_ptr
* @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
* @param[in] scale Integer scaling factor. Supported data types: S32.
*/
__kernel void pixelwise_mul_int(
TENSOR3D_DECLARATION(in1),
TENSOR3D_DECLARATION(in2),
TENSOR3D_DECLARATION(out),
const uint scale)
{
// Get pixels pointer
Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1);
Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2);
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out);
// Load data
VEC_DATA_TYPE(ACC_DATA_TYPE, 16)
in1_data = CONVERT(vload16(0, (__global DATA_TYPE_IN1 *)in1.ptr), VEC_DATA_TYPE(ACC_DATA_TYPE, 16));
VEC_DATA_TYPE(ACC_DATA_TYPE, 16)
in2_data = CONVERT(vload16(0, (__global DATA_TYPE_IN2 *)in2.ptr), VEC_DATA_TYPE(ACC_DATA_TYPE, 16));
// Perform multiplication and store result
vstore16(MUL_OP(in1_data, in2_data, scale, DATA_TYPE_OUT, 16), 0, (__global DATA_TYPE_OUT *)out.ptr);
}
#endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT) */
#if defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE)
#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
#define VEC_TYPE VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)
/** Performs a pixelwise multiplication with float scale of quantized inputs.
*
* @note The quantization offset of the first operand must be passed at compile time only if asymmetric using -DOFFSET_IN1, e.g. -DOFFSET_IN1=10
* @note The quantization offset of the second operand must be passed at compile time only if asymmetric using -DOFFSET_IN2, e.g. -DOFFSET_IN2=10
* @note The quantization offset of the output must be passed at compile time only if asymmetric using -DOFFSET_OUT, e.g. -DOFFSET_OUT=10
* @note The quantization scale of the first operand must be passed at compile time using -DSCALE_IN1, e.g. -DSCALE_IN1=10
* @note The quantization scale of the second operand must be passed at compile time using -DSCALE_IN2, e.g. -DSCALE_IN2=10
* @note The quantization scale of the output must be passed at compile time using -DSCALE_OUT, e.g. -DSCALE_OUT=10
* @note To perform saturating operation -DSATURATE has to be passed to the compiler otherwise wrapping policy will be used.
* @attention The data type must be passed at compile time using -DDATA_TYPE_OUT, i.e. -DDATA_TYPE_OUT=uchar
* @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
*
* @param[in] in1_ptr Pointer to the source image. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM16
* @param[in] in1_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] in2_ptr Pointer to the source image. Supported data types: same as @p in1_ptr
* @param[in] in2_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in1_ptr
* @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
* @param[in] scale Float scaling factor. Supported data types: F32
*/
__kernel void pixelwise_mul_quantized(
TENSOR3D_DECLARATION(in1),
TENSOR3D_DECLARATION(in2),
TENSOR3D_DECLARATION(out),
const float scale)
{
// Get pixels pointer
Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1);
Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2);
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out);
// Load data
VEC_INT in_a = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in1.ptr), VEC_INT);
VEC_INT in_b = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in2.ptr), VEC_INT);
// Dequantize
#if defined(OFFSET_IN1)
in_a -= (VEC_INT)((int)OFFSET_IN1);
#endif // defined(OFFSET_IN1)
#if defined(OFFSET_IN2)
in_b -= (VEC_INT)((int)OFFSET_IN2);
#endif // defined(OFFSET_IN2)
const VEC_FLOAT in1f32 = CONVERT(in_a, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN1);
const VEC_FLOAT in2f32 = CONVERT(in_b, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN2);
#if defined(OFFSET_OUT)
const VEC_FLOAT qresf32 = (in1f32 * in2f32 * scale) / ((VEC_FLOAT)(float)SCALE_OUT) + ((VEC_FLOAT)((float)OFFSET_OUT));
#else // defined(OFFSET_OUT)
const VEC_FLOAT qresf32 = (in1f32 * in2f32 * scale) / ((VEC_FLOAT)(float)SCALE_OUT);
#endif // defined(OFFSET_OUT)
const VEC_TYPE res = CONVERT_SAT(CONVERT_DOWN(qresf32, VEC_INT), VEC_TYPE);
// Store result
VSTORE(VEC_SIZE)
(res, 0, (__global DATA_TYPE_OUT *)out.ptr);
}
#endif /* defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) */