blob: fa152c9f581ab008c25930bd2c2321b5c494e07b [file] [log] [blame]
/*
* Copyright (c) 2020-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
{
if(!skip_border)
{
border_size = BorderSize(0);
}
const Coordinates &anchor = valid_region.anchor;
const TensorShape &shape = valid_region.shape;
Window window;
window.set(0, Window::Dimension(
// Skip the border left of the image
anchor[0] + border_size.left,
// Skip the border right of the image
// Make sure the window width is a multiple of the step size
anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
steps[0]));
size_t n = 1;
if(anchor.num_dimensions() > 1)
{
window.set(1, Window::Dimension(
// Skip the border above the image
anchor[1] + border_size.top,
// Skip the border below the image
anchor[1] + border_size.top + ceil_to_multiple(std::max(0, static_cast<int>(shape[1]) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom)), steps[1]),
steps[1]));
++n;
}
if(anchor.num_dimensions() > 2)
{
window.set(2, Window::Dimension(anchor[2], std::max<size_t>(1, shape[2]), steps[2]));
++n;
}
for(; n < anchor.num_dimensions(); ++n)
{
window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
}
for(; n < Coordinates::num_max_dimensions; ++n)
{
window.set(n, Window::Dimension(0, 1));
}
return window;
}
Window calculate_max_window(const TensorShape &shape, const Steps &steps, bool skip_border, BorderSize border_size)
{
if(!skip_border)
{
border_size = BorderSize(0);
}
Window window;
window.set(0, Window::Dimension(
// Skip the border left of the image
border_size.left,
// Skip the border right of the image
// Make sure the window width is a multiple of the step size
border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
steps[0]));
size_t n = 1;
if(shape.num_dimensions() > 1)
{
window.set(1, Window::Dimension(
// Skip the border above the image
border_size.top,
// Skip the border below the image
border_size.top + ceil_to_multiple(std::max(0, static_cast<int>(shape[1]) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom)), steps[1]),
steps[1]));
++n;
}
if(shape.num_dimensions() > 2)
{
window.set(2, Window::Dimension(0, std::max<size_t>(1, shape[2]), steps[2]));
++n;
}
for(; n < shape.num_dimensions(); ++n)
{
window.set(n, Window::Dimension(0, std::max<size_t>(1, shape[n])));
}
for(; n < Coordinates::num_max_dimensions; ++n)
{
window.set(n, Window::Dimension(0, 1));
}
return window;
}
Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps, BorderSize border_size)
{
const Coordinates &anchor = valid_region.anchor;
const TensorShape &shape = valid_region.shape;
Window window;
window.set(0, Window::Dimension(
// move the anchor to the start from the border
anchor[0] - border_size.left,
// move the anchor to include the right end border
// Make sure the window width is a multiple of the step size
anchor[0] - border_size.left + ceil_to_multiple(shape[0] + border_size.left + border_size.right, steps[0]),
steps[0]));
size_t n = 1;
if(anchor.num_dimensions() > 1)
{
window.set(1, Window::Dimension(
// Include the border above the image
anchor[1] - border_size.top,
// Include the border below the image
anchor[1] - border_size.top + ceil_to_multiple(shape[1] + border_size.top + border_size.bottom, steps[1]),
steps[1]));
++n;
}
if(anchor.num_dimensions() > 2)
{
window.set(2, Window::Dimension(0, std::max<size_t>(1, shape[n]), steps[2]));
++n;
}
for(; n < anchor.num_dimensions(); ++n)
{
window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
}
for(; n < Coordinates::num_max_dimensions; ++n)
{
window.set(n, Window::Dimension(0, 1));
}
return window;
}
Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
{
if(skip_border)
{
border_size.top = 0;
border_size.bottom = 0;
}
else
{
border_size.left = 0;
border_size.right = 0;
}
const Coordinates &anchor = valid_region.anchor;
const TensorShape &shape = valid_region.shape;
Window window;
window.set(0, Window::Dimension(
// Skip the border left of the image
anchor[0] + border_size.left,
// Skip the border right of the image
// Make sure the window width is a multiple of the step size
anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
steps[0]));
size_t n = 1;
if(anchor.num_dimensions() > 1)
{
window.set(1, Window::Dimension(
// Skip the border above the image
anchor[1] - border_size.top,
// Skip the border below the image
anchor[1] + shape[1] + border_size.bottom,
1));
++n;
}
for(; n < anchor.num_dimensions(); ++n)
{
window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
}
for(; n < Coordinates::num_max_dimensions; ++n)
{
window.set(n, Window::Dimension(0, 1));
}
return window;
}
std::pair<Window, size_t> calculate_squashed_or_max_window(const ITensorInfo &src0, const ITensorInfo &src1)
{
const auto &shape0 = src0.tensor_shape();
const auto &shape1 = src1.tensor_shape();
const auto &strides0 = src0.strides_in_bytes();
const auto &strides1 = src1.strides_in_bytes();
const auto num_dimensions = std::max(src0.num_dimensions(), src1.num_dimensions());
Window win;
size_t split_dimension = Window::DimY;
size_t dim = 0;
size_t squashed_bytes = src0.element_size();
// Try to squash the low dimensions together.
for(; dim < num_dimensions; ++dim)
{
if(shape0[dim] != shape1[dim] || strides0[dim] != squashed_bytes || strides1[dim] != squashed_bytes)
{
break;
}
squashed_bytes *= shape0[dim];
}
if(dim == num_dimensions)
{
auto squashed_elements = squashed_bytes / src0.element_size();
split_dimension = Window::DimX;
// The input tensors can be interpreted as 1D array.
win.set(0, Window::Dimension(0, squashed_elements, 1));
for(dim = 1; dim < Coordinates::num_max_dimensions; ++dim)
{
win.set(dim, Window::Dimension(0, 1, 1));
}
}
else
{
// Generates the max window.
for(dim = 0; dim < Coordinates::num_max_dimensions; ++dim)
{
win.set(dim, Window::Dimension(0, std::max(shape0[dim], shape1[dim]), 1));
}
}
return std::make_pair(win, split_dimension);
}
} // namespace arm_compute