COMPMID-1973: Implement FFTConvolutionLayer on NEON

Change-Id: I2e667c0411bda0164a616ffe44473a78de6752c9
Signed-off-by: giuros01 <giuseppe.rossini@arm.com>
Reviewed-on: https://review.mlplatform.org/c/1066
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/NEON/kernels/NEFFTDigitReverseKernel.cpp b/src/core/NEON/kernels/NEFFTDigitReverseKernel.cpp
index b2ffb01..cf77345 100644
--- a/src/core/NEON/kernels/NEFFTDigitReverseKernel.cpp
+++ b/src/core/NEON/kernels/NEFFTDigitReverseKernel.cpp
@@ -29,19 +29,24 @@
 #include "arm_compute/core/Validate.h"
 #include "arm_compute/core/Window.h"
 
+#include <set>
+
 namespace arm_compute
 {
 namespace
 {
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, unsigned int axis)
+Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
 {
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(idx, 1, DataType::U32);
-    ARM_COMPUTE_RETURN_ERROR_ON(axis > 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[config.axis] != idx->tensor_shape().x());
 
     // Checks performed when output is configured
     if((output != nullptr) && (output->total_size() != 0))
     {
+        ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 2);
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
     }
@@ -49,75 +54,207 @@
     return Status{};
 }
 
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *idx, unsigned int axis)
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
 {
-    ARM_COMPUTE_UNUSED(idx, axis);
+    ARM_COMPUTE_UNUSED(idx, config);
 
-    auto_init_if_empty(*output, *input);
+    auto_init_if_empty(*output, input->clone()->set_num_channels(2));
 
-    Window win = calculate_max_window(*output, Steps());
-    output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
+    Window win = calculate_max_window(*input, Steps());
+    input->set_valid_region(ValidRegion(Coordinates(), input->tensor_shape()));
 
     return std::make_pair(Status{}, win);
 }
 } // namespace
 
 NEFFTDigitReverseKernel::NEFFTDigitReverseKernel()
-    : _input(nullptr), _output(nullptr), _idx(nullptr), _axis(0)
+    : _func(nullptr), _input(nullptr), _output(nullptr), _idx(nullptr)
 {
 }
 
-void NEFFTDigitReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *idx, unsigned int axis)
+void NEFFTDigitReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *idx, const FFTDigitReverseKernelInfo &config)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, idx);
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), idx->info(), axis));
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), idx->info(), config));
 
     _input  = input;
     _output = output;
     _idx    = idx;
-    _axis   = axis;
+
+    const size_t axis             = config.axis;
+    const bool   is_conj          = config.conjugate;
+    const bool   is_input_complex = (input->info()->num_channels() == 2);
 
     // Configure kernel window
-    auto win_config = validate_and_configure_window(input->info(), output->info(), idx->info(), axis);
+    auto win_config = validate_and_configure_window(input->info(), output->info(), idx->info(), config);
     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
     INEKernel::configure(win_config.second);
+
+    if(axis == 0)
+    {
+        if(is_input_complex)
+        {
+            if(is_conj)
+            {
+                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, true>;
+            }
+            else
+            {
+                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, false>;
+            }
+        }
+        else
+        {
+            _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<false, false>;
+        }
+    }
+    else if(axis == 1)
+    {
+        if(is_input_complex)
+        {
+            if(is_conj)
+            {
+                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, true>;
+            }
+            else
+            {
+                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, false>;
+            }
+        }
+        else
+        {
+            _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<false, false>;
+        }
+    }
+    else
+    {
+        ARM_COMPUTE_ERROR("Not supported");
+    }
 }
 
-Status NEFFTDigitReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, unsigned int axis)
+Status NEFFTDigitReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
 {
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, idx, axis));
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), idx->clone().get(), axis).first);
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, idx, config));
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), idx->clone().get(), config).first);
     return Status{};
 }
 
+template <bool is_input_complex, bool is_conj>
+void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0(const Window &window)
+{
+    const size_t N = _input->info()->dimension(0);
+
+    // Copy the look-up buffer to a local array
+    std::vector<unsigned int> buffer_idx(N);
+    std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), N, buffer_idx.data());
+
+    // Input/output iterators
+    Window slice = window;
+    slice.set(0, Window::DimX);
+    Iterator in(_input, slice);
+    Iterator out(_output, slice);
+
+    // Row buffers
+    std::vector<float> buffer_row_out(2 * N);
+    std::vector<float> buffer_row_in(2 * N);
+
+    execute_window_loop(slice, [&](const Coordinates &)
+    {
+        if(is_input_complex)
+        {
+            // Load
+            memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), 2 * N * sizeof(float));
+
+            // Shuffle
+            for(size_t x = 0; x < 2 * N; x += 2)
+            {
+                size_t idx            = buffer_idx[x / 2];
+                buffer_row_out[x]     = buffer_row_in[2 * idx];
+                buffer_row_out[x + 1] = (is_conj ? -buffer_row_in[2 * idx + 1] : buffer_row_in[2 * idx + 1]);
+            }
+        }
+        else
+        {
+            // Load
+            memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), N * sizeof(float));
+
+            // Shuffle
+            for(size_t x = 0; x < N; ++x)
+            {
+                size_t idx            = buffer_idx[x];
+                buffer_row_out[2 * x] = buffer_row_in[idx];
+            }
+        }
+
+        // Copy back
+        memcpy(reinterpret_cast<float *>(out.ptr()), buffer_row_out.data(), 2 * N * sizeof(float));
+    },
+    in, out);
+}
+
+template <bool is_input_complex, bool is_conj>
+void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1(const Window &window)
+{
+    const size_t Nx = _input->info()->dimension(0);
+    const size_t Ny = _input->info()->dimension(1);
+
+    // Copy the look-up buffer to a local array
+    std::vector<unsigned int> buffer_idx(Ny);
+    std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), Ny, buffer_idx.data());
+
+    // Output iterator
+    Window slice = window;
+    slice.set(0, Window::DimX);
+    Iterator out(_output, slice);
+
+    // Row buffer
+    std::vector<float> buffer_row(Nx);
+
+    // Strides
+    const size_t stride_z = _input->info()->strides_in_bytes()[2];
+    const size_t stride_w = _input->info()->strides_in_bytes()[3];
+
+    execute_window_loop(slice, [&](const Coordinates & id)
+    {
+        auto        *out_ptr    = reinterpret_cast<float *>(out.ptr());
+        auto        *in_ptr     = reinterpret_cast<float *>(_input->buffer() + id.z() * stride_z + id[3] * stride_w);
+        const size_t y_shuffled = buffer_idx[id.y()];
+
+        if(is_input_complex)
+        {
+            // Shuffle the entire row into the output
+            memcpy(out_ptr, in_ptr + 2 * Nx * y_shuffled, 2 * Nx * sizeof(float));
+
+            // Conjugate if necessary
+            if(is_conj)
+            {
+                for(size_t x = 0; x < 2 * Nx; x += 2)
+                {
+                    out_ptr[x + 1] = -out_ptr[x + 1];
+                }
+            }
+        }
+        else
+        {
+            // Shuffle the entire row into the buffer
+            memcpy(buffer_row.data(), in_ptr + Nx * y_shuffled, Nx * sizeof(float));
+
+            // Copy the buffer to the output, with a zero imaginary part
+            for(size_t x = 0; x < 2 * Nx; x += 2)
+            {
+                out_ptr[x] = buffer_row[x / 2];
+            }
+        }
+    },
+    out);
+}
+
 void NEFFTDigitReverseKernel::run(const Window &window, const ThreadInfo &info)
 {
-    ARM_COMPUTE_UNUSED(info);
-    Iterator     out(_output, window);
-    const size_t element_size = _input->info()->element_size();
-
-    // Pointers to the buffers
-    const size_t offset    = _input->info()->offset_first_element_in_bytes();
-    auto        *idx_ptr   = reinterpret_cast<unsigned int *>(_idx->buffer());
-    uint8_t     *input_ptr = offset + _input->buffer();
-
-    // Strides
-    const size_t stride_x = _input->info()->strides_in_bytes()[0];
-    const size_t stride_y = _input->info()->strides_in_bytes()[1];
-    const size_t stride_z = _input->info()->strides_in_bytes()[2];
-    const size_t stride_w = _input->info()->strides_in_bytes()[3];
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        unsigned int in_index_1d = idx_ptr[id[_axis]];
-        auto         reverse_id  = id;
-        reverse_id.set(_axis, in_index_1d);
-
-        memcpy(out.ptr(), input_ptr + reverse_id.x() * stride_x + reverse_id.y() * stride_y + reverse_id.z() * stride_z + reverse_id[3] * stride_w, element_size);
-    },
-    out);
-
     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+    ARM_COMPUTE_UNUSED(info);
+    (this->*_func)(window);
 }
+
 } // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEFFTScaleKernel.cpp b/src/core/NEON/kernels/NEFFTScaleKernel.cpp
index 6568755..56703ba 100644
--- a/src/core/NEON/kernels/NEFFTScaleKernel.cpp
+++ b/src/core/NEON/kernels/NEFFTScaleKernel.cpp
@@ -129,7 +129,7 @@
 
     execute_window_loop(window, [&](const Coordinates &)
     {
-        scale_complex(reinterpret_cast<float *>(out.ptr()), reinterpret_cast<float *>(in.ptr()), _is_conj, _scale);
+        scale_complex(reinterpret_cast<float *>(in.ptr()), reinterpret_cast<float *>(out.ptr()), _is_conj, _scale);
     },
     in, out);
 }
diff --git a/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp b/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
index b565300..fa16484 100644
--- a/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
+++ b/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
@@ -30,6 +30,7 @@
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/NEON/NEAsymm.h"
 #include "arm_compute/core/NEON/NEFixedPoint.h"
+#include "arm_compute/core/NEON/wrapper/wrapper.h"
 #include "arm_compute/core/TensorInfo.h"
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/Validate.h"
@@ -353,6 +354,35 @@
     vst4q_f32(output, result);
 }
 
+void c_mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr)
+{
+    const auto input1 = static_cast<const float *__restrict>(input1_ptr);
+    const auto input2 = static_cast<const float *__restrict>(input2_ptr);
+    const auto output = static_cast<float *__restrict>(output_ptr);
+
+    const float32x4_t a = wrapper::vloadq(input1);
+    float32x4_t       b = wrapper::vloadq(input2);
+
+    using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
+
+    const float32x4_t mask  = { -1.0f, 1.0f, -1.0f, 1.0f };
+    const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
+    const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
+    const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
+    const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
+
+    const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
+    const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
+
+    float32x4_t res = wrapper::vmul(tmp0, b);
+
+    b = wrapper::vrev64(b);
+    b = wrapper::vmul(b, mask);
+
+    res = wrapper::vmla(res, tmp1, b);
+    wrapper::vstore(output, res);
+}
+
 void mul_F16_F16_F16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
 {
 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
@@ -665,4 +695,111 @@
     const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
     return BorderSize{ 0, border, 0, 0 };
 }
+
+namespace
+{
+constexpr unsigned int num_elems_processed_per_iteration_complex = 2;
+
+Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
+
+    const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
+
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
+
+    // Validate in case of configured output
+    if(output->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
+    }
+
+    return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
+{
+    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
+    const TensorShape &out_shape    = broadcast_pair.first;
+    const ValidRegion &valid_region = broadcast_pair.second;
+
+    // Auto initialize output if not initialized
+    const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
+    auto_init_if_empty(*output, out_info);
+
+    Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
+    Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
+    Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
+
+    AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
+    AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
+    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
+
+    bool window_changed = update_window_and_padding(win_input1, input1_access)
+                          || update_window_and_padding(win_input2, input2_access)
+                          || update_window_and_padding(win, output_access);
+
+    output_access.set_valid_region(win, valid_region);
+
+    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+    return std::make_pair(err, win);
+}
+} // namespace
+
+NEComplexPixelWiseMultiplicationKernel::NEComplexPixelWiseMultiplicationKernel()
+    : _input1(nullptr), _input2(nullptr), _output(nullptr)
+{
+}
+
+void NEComplexPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info()));
+
+    // Configure kernel window
+    auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info());
+    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+
+    _input1 = input1;
+    _input2 = input2;
+    _output = output;
+
+    // Create kernel
+    INEKernel::configure(win_config.second);
+}
+
+Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
+
+    return Status{};
+}
+
+void NEComplexPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+
+    Iterator input1(_input1, window.broadcast_if_dimension_le_one(_input1->info()->tensor_shape()));
+    Iterator input2(_input2, window.broadcast_if_dimension_le_one(_input2->info()->tensor_shape()));
+    Iterator output(_output, window);
+
+    execute_window_loop(window, [&](const Coordinates &)
+    {
+        c_mul_F32_F32_F32_n(input1.ptr(), input2.ptr(), output.ptr());
+    },
+    input1, input2, output);
+}
+
+BorderSize NEComplexPixelWiseMultiplicationKernel::border_size() const
+{
+    const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
+    const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
+    return { 0, border, 0, 0 };
+}
 } // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEReductionOperationKernel.cpp b/src/core/NEON/kernels/NEReductionOperationKernel.cpp
index e6fdba2..aa20d1f 100644
--- a/src/core/NEON/kernels/NEReductionOperationKernel.cpp
+++ b/src/core/NEON/kernels/NEReductionOperationKernel.cpp
@@ -602,7 +602,7 @@
     {
         ARM_COMPUTE_UNUSED(out_slice);
 
-        execute_window_loop(in_slice, [&](const Coordinates & id)
+        execute_window_loop(in_slice, [&](const Coordinates &)
         {
             neon_vector vec_res_value = { 0 };
             if(op == ReductionOperation::ARG_IDX_MAX || op == ReductionOperation::ARG_IDX_MIN)
@@ -688,13 +688,70 @@
     }
 };
 
+template <typename T, int S, int axis, ReductionOperation op>
+struct RedOpYZW_complex
+{
+    /** NEON vector tag type. */
+    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;
+    using neon_vector  = typename wrapper::traits::neon_vector<T, S>::type;
+
+    inline void operator()(Iterator &input, Iterator &output, Window &in_slice, Window &out_slice, const TensorInfo &in_info, int, const ReductionOperation)
+    {
+        ARM_COMPUTE_UNUSED(out_slice);
+        ARM_COMPUTE_ERROR_ON(axis != 2);
+
+        const size_t stride_z = in_info.strides_in_bytes()[axis];
+
+        execute_window_loop(in_slice, [&](const Coordinates &)
+        {
+            neon_vector vec_res_value_0 = { 0 };
+            neon_vector vec_res_value_1 = { 0 };
+
+            vec_res_value_0 = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
+            vec_res_value_1 = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
+
+            for(unsigned int dim = 0; dim < in_info.dimension(axis); ++dim)
+            {
+                T *in_ptr_0;
+                T *in_ptr_1;
+                switch(axis)
+                {
+                    case 2:
+                        in_ptr_0 = reinterpret_cast<T *>(input.ptr() + stride_z * dim);
+                        in_ptr_1 = reinterpret_cast<T *>(input.ptr() + 16 + stride_z * dim);
+                        break;
+                    default:
+                        ARM_COMPUTE_ERROR("Not supported");
+                }
+                const auto vec_elements_0 = wrapper::vloadq(in_ptr_0);
+                const auto vec_elements_1 = wrapper::vloadq(in_ptr_1);
+
+                switch(op)
+                {
+                    case ReductionOperation::SUM:
+                        vec_res_value_0 = wrapper::vadd(vec_elements_0, vec_res_value_0);
+                        vec_res_value_1 = wrapper::vadd(vec_elements_1, vec_res_value_1);
+                        break;
+                    default:
+                        ARM_COMPUTE_ERROR("Not supported");
+                }
+            }
+
+            wrapper::vstore(reinterpret_cast<T *>(output.ptr()), vec_res_value_0);
+            wrapper::vstore(reinterpret_cast<T *>(output.ptr() + 16), vec_res_value_1);
+
+        },
+        input, output);
+    }
+};
+
 struct RedOpYZW_qasymm8
 {
     inline void operator()(Iterator &input, Iterator &output, Window &in_slice, Window &out_slice, const TensorInfo &in_info, int axis, const ReductionOperation op)
     {
         ARM_COMPUTE_UNUSED(out_slice);
 
-        execute_window_loop(in_slice, [&](const Coordinates & id)
+        execute_window_loop(in_slice, [&](const Coordinates &)
         {
             uint32x4x4_t vec_res_idx{ { 0 } };
             auto         vec_res_value1 = vdupq_n_u32(0);
@@ -848,6 +905,31 @@
 
 void reduce_op(const Window &window, const ITensor *input, ITensor *output, unsigned int axis, const ReductionOperation op)
 {
+    const bool is_complex = (input->info()->num_channels() == 2);
+
+    if(is_complex)
+    {
+        switch(axis)
+        {
+            case 2:
+                switch(input->info()->data_type())
+                {
+                    case DataType::F32:
+                        switch(op)
+                        {
+                            case ReductionOperation::SUM:
+                                return Reducer<RedOpYZW_complex<float, 4, 2, ReductionOperation::SUM>>::reduceZ(window, input, output, RedOpYZW_complex<float, 4, 2, ReductionOperation::SUM>(), op);
+                            default:
+                                ARM_COMPUTE_ERROR("Not supported");
+                        }
+                    default:
+                        ARM_COMPUTE_ERROR("Not supported");
+                }
+            default:
+                ARM_COMPUTE_ERROR("Not supported");
+        }
+    }
+
     switch(axis)
     {
         case 0:
@@ -917,7 +999,17 @@
 
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
+
+    if(input->num_channels() == 1)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
+        ARM_COMPUTE_RETURN_ERROR_ON(op != ReductionOperation::SUM);
+        ARM_COMPUTE_RETURN_ERROR_ON(axis != 2);
+    }
 
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions");
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
@@ -929,6 +1021,7 @@
         {
             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
+            ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() != output->num_channels());
         }
         else
         {
@@ -951,7 +1044,7 @@
     // Output auto initialization if not yet initialized
     const bool is_arg_min_max   = (op == ReductionOperation::ARG_IDX_MIN || op == ReductionOperation::ARG_IDX_MAX);
     DataType   output_data_type = is_arg_min_max ? DataType::U32 : input->data_type();
-    auto_init_if_empty(*output, output_shape, 1, output_data_type, input->quantization_info());
+    auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true));
 
     unsigned int num_elems_processed_per_iteration = 16 / data_size_from_type(input->data_type());
 
diff --git a/src/runtime/NEON/functions/NEConvolutionLayer.cpp b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
index 5059162..a62459b 100644
--- a/src/runtime/NEON/functions/NEConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
@@ -73,6 +73,13 @@
             _function = std::move(f);
             break;
         }
+        case ConvolutionMethod::FFT:
+        {
+            auto f = arm_compute::support::cpp14::make_unique<NEFFTConvolutionLayer>(_memory_manager);
+            f->configure(input, weights, biases, output, conv_info, act_info);
+            _function = std::move(f);
+            break;
+        }
         default:
             ARM_COMPUTE_ERROR("Not supported.");
             break;
@@ -97,6 +104,10 @@
         case ConvolutionMethod::DIRECT:
             //Validate Gemm-based Convolution
             ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayer::validate(input, weights, biases, output, conv_info, act_info));
+        case ConvolutionMethod::FFT:
+            // Validate FFT-based convolution layer
+            ARM_COMPUTE_RETURN_ON_ERROR(NEFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info));
+            break;
         default:
             ARM_COMPUTE_ERROR("Not supported.");
             break;
@@ -148,12 +159,22 @@
         return (*found).second;
     }
 
-    if(dilation != Size2D(1U, 1U) || input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) <= 16)
+    if(dilation != Size2D(1U, 1U))
     {
         return ConvolutionMethod::GEMM;
     }
-
-    return bool(NEWinogradConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math)) ? ConvolutionMethod::WINOGRAD : ConvolutionMethod::GEMM;
+    else
+    {
+        if((weights->dimension(idx_h) > 7) && (input->dimension(idx_c) > output->dimension(idx_c)) && (NEFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info)))
+        {
+            return ConvolutionMethod::FFT;
+        }
+        if(input->dimension(idx_c) < 16)
+        {
+            return ConvolutionMethod::GEMM;
+        }
+        return bool(NEWinogradConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math)) ? ConvolutionMethod::WINOGRAD : ConvolutionMethod::GEMM;
+    }
 }
 
 void NEConvolutionLayer::run()
diff --git a/src/runtime/NEON/functions/NEFFT1D.cpp b/src/runtime/NEON/functions/NEFFT1D.cpp
index 665efeb..25ba1c8 100644
--- a/src/runtime/NEON/functions/NEFFT1D.cpp
+++ b/src/runtime/NEON/functions/NEFFT1D.cpp
@@ -37,6 +37,9 @@
 
 void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config)
 {
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+    ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config));
+
     // Decompose size to radix factors
     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
     const unsigned int N                 = input->info()->tensor_shape()[config.axis];
@@ -44,21 +47,25 @@
     ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
 
     // Flags
-    _run_scale        = config.direction == FFTDirection::Inverse;
-    _axis             = config.axis;
+    _run_scale = config.direction == FFTDirection::Inverse;
+
     const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
 
     // Configure digit reverse
+    FFTDigitReverseKernelInfo digit_reverse_config;
+    digit_reverse_config.axis      = config.axis;
+    digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
     TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
     _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
     _memory_group.manage(&_digit_reversed_input);
-    _digit_reverse_kernel.configure(input, &_digit_reversed_input, &_digit_reverse_indices, config.axis);
+    _digit_reverse_kernel.configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
 
     // Create and configure FFT kernels
     unsigned int Nx = 1;
-
-    _num_ffts = decomposed_vector.size();
+    _num_ffts       = decomposed_vector.size();
     _fft_kernels.resize(_num_ffts);
+    _axis = config.axis;
+
     for(unsigned int i = 0; i < _num_ffts; ++i)
     {
         const unsigned int radix_for_stage = decomposed_vector.at(i);
@@ -68,10 +75,20 @@
         fft_kernel_info.radix          = radix_for_stage;
         fft_kernel_info.Nx             = Nx;
         fft_kernel_info.is_first_stage = (i == 0);
-        _fft_kernels[i].configure(&_digit_reversed_input, i == (_num_ffts - 1) && !is_c2r ? output : nullptr, fft_kernel_info);
+        _fft_kernels[i].configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
+
         Nx *= radix_for_stage;
     }
 
+    // Configure scale kernel
+    if(_run_scale)
+    {
+        FFTScaleKernelInfo scale_config;
+        scale_config.scale     = static_cast<float>(N);
+        scale_config.conjugate = config.direction == FFTDirection::Inverse;
+        is_c2r ? _scale_kernel.configure(&_digit_reversed_input, output, scale_config) : _scale_kernel.configure(output, nullptr, scale_config);
+    }
+
     // Allocate tensors
     _digit_reversed_input.allocator()->allocate();
     _digit_reverse_indices.allocator()->allocate();
@@ -84,8 +101,9 @@
 Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON(config.axis > 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
 
     // Check if FFT is decomposable
     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
@@ -96,6 +114,9 @@
     // Checks performed when output is configured
     if((output != nullptr) && (output->total_size() != 0))
     {
+        // All combinations are supported except real input with real output (i.e., both input channels set to 1)
+        ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2);
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
     }
@@ -107,7 +128,7 @@
 {
     MemoryGroupResourceScope scope_mg(_memory_group);
 
-    NEScheduler::get().schedule(&_digit_reverse_kernel, (_axis == 0 ? Window::DimY : Window::DimX));
+    NEScheduler::get().schedule(&_digit_reverse_kernel, (_axis == 0 ? Window::DimY : Window::DimZ));
 
     for(unsigned int i = 0; i < _num_ffts; ++i)
     {
diff --git a/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp b/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp
new file mode 100644
index 0000000..9624025
--- /dev/null
+++ b/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp
@@ -0,0 +1,381 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/NEON/functions/NEFFTConvolutionLayer.h"
+
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/helpers/fft.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+
+namespace arm_compute
+{
+namespace
+{
+int pad_decomposable(int N)
+{
+    const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
+
+    int  pad           = 0;
+    bool is_decomposed = false;
+    while(!is_decomposed)
+    {
+        const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N++, supported_radix);
+        is_decomposed                = !decomposed_vector.empty();
+        if(!is_decomposed)
+        {
+            ++pad;
+        }
+    }
+    return pad;
+}
+} // namespace
+
+NEFFTConvolutionLayer::NEFFTConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(memory_manager),
+      _flip_weights_func(),
+      _permute_input_func(),
+      _permute_output_func(),
+      _permute_weights_func(),
+      _permute_bias_func(),
+      _pad_input_func(),
+      _pad_weights_func(),
+      _transform_input_func(memory_manager),
+      _transform_weights_func(),
+      _itransform_output_func(memory_manager),
+      _prod_func(),
+      _reduce_func(),
+      _extract_output_func(),
+      _bias_add_func(),
+      _activation_layer_func(),
+      _permuted_input(),
+      _permuted_weights(),
+      _permuted_bias(),
+      _permuted_output(),
+      _padded_input(),
+      _padded_weights(),
+      _flip_axis(),
+      _flipped_weights(),
+      _transformed_input(),
+      _transformed_weights(),
+      _input_weights_product(),
+      _output_product(),
+      _output_reduced(),
+      _itransformed_output(),
+      _reshaped_output(),
+      _bias_output(),
+      _original_weights(nullptr),
+      _original_bias(nullptr),
+      _is_activationlayer_enabled(false),
+      _needs_permute(false),
+      _has_bias(false),
+      _is_prepared(false)
+{
+}
+
+void NEFFTConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
+                                      const ActivationLayerInfo &act_info)
+{
+    _original_weights = weights;
+    _original_bias    = biases;
+
+    // Flat if bias addition is required
+    _has_bias = biases != nullptr;
+
+    // Get indices for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D input_dims  = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
+    const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
+    const Size2D pad_valid   = Size2D(pad_decomposable(input_dims.x() + kernel_size.x() - 1),
+                                      pad_decomposable(input_dims.y() + kernel_size.y() - 1));
+    // Tensors to use
+    ITensor       *input_to_use   = input;
+    const ITensor *weights_to_use = weights;
+    ITensor       *output_to_use  = _has_bias ? &_bias_output : output;
+
+    // Permute bias
+    _permute_bias_func.configure(biases, &_permuted_bias, PermutationVector(1U, 2U, 0U));
+    _permuted_bias.info()->set_data_layout(DataLayout::NCHW);
+
+    // Permute input if needed
+    _needs_permute = input->info()->data_layout() == DataLayout::NHWC;
+    if(_needs_permute)
+    {
+        _memory_group.manage(&_permuted_input);
+        // Configure the function to transform the input tensor from NHWC -> NCHW
+        _permute_input_func.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
+        _permuted_input.info()->set_data_layout(DataLayout::NCHW);
+
+        // Configure the function to transform the weights tensor from HWI -> IHW
+        _permute_weights_func.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
+        _permuted_weights.info()->set_data_layout(DataLayout::NCHW);
+
+        input_to_use   = &_permuted_input;
+        weights_to_use = &_permuted_weights;
+    }
+
+    // Flip weights
+    _flipped_weights.allocator()->init(weights_to_use->info()->clone()->set_is_resizable(true).reset_padding());
+    _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
+    _flip_weights_func.configure(weights_to_use, &_flipped_weights, &_flip_axis);
+
+    // Pad weights
+    const PaddingList padding_w = { { 0, input_dims.x() + pad_valid.x() - 1 }, { 0, input_dims.y() + pad_valid.y() - 1 } };
+    _pad_weights_func.configure(&_flipped_weights, &_padded_weights, padding_w);
+
+    // Transform weights
+    _transform_weights_func = support::cpp14::make_unique<NEFFT2D>();
+    _transform_weights_func->configure(&_padded_weights, &_transformed_weights, FFT2DInfo());
+
+    // Pad input
+    const PaddingList padding_in = { { 0, kernel_size.x() + pad_valid.x() - 1 }, { 0, kernel_size.y() + pad_valid.y() - 1 } };
+    _memory_group.manage(&_padded_input);
+    _pad_input_func.configure(input_to_use, &_padded_input, padding_in);
+    if(_needs_permute)
+    {
+        _permuted_input.allocator()->allocate();
+    }
+
+    // Transform input
+    _memory_group.manage(&_transformed_input);
+    _transform_input_func.configure(&_padded_input, &_transformed_input, FFT2DInfo());
+    _padded_input.allocator()->allocate();
+
+    // Perform product
+    _memory_group.manage(&_output_product);
+    _prod_func.configure(&_transformed_input, &_transformed_weights, &_output_product);
+    _transformed_input.allocator()->allocate();
+
+    // Perform reduction
+    _memory_group.manage(&_output_reduced);
+    _reduce_func.configure(&_output_product, &_output_reduced, 2, ReductionOperation::SUM);
+    _output_product.allocator()->allocate();
+
+    // Transform output
+    _memory_group.manage(&_itransformed_output);
+    FFT2DInfo itranform_info;
+    itranform_info.direction = FFTDirection::Inverse;
+    _itransformed_output.allocator()->init(_output_reduced.info()->clone()->set_is_resizable(true).set_num_channels(1).reset_padding());
+    _itransform_output_func.configure(&_output_reduced, &_itransformed_output, itranform_info);
+    _output_reduced.allocator()->allocate();
+
+    // Reshape output
+    TensorShape reshaped_shape = _itransformed_output.info()->tensor_shape();
+    reshaped_shape.remove_dimension(2);
+    _reshaped_output.allocator()->init(_itransformed_output.info()->clone()->set_tensor_shape(reshaped_shape));
+
+    // Extract correct region
+    const int start_left = kernel_size.x() - conv_info.pad_left() - 1;
+    const int start_top  = kernel_size.y() - conv_info.pad_top() - 1;
+    const int end_right  = _reshaped_output.info()->tensor_shape().x() - (kernel_size.x() - conv_info.pad_right() - 1) - pad_valid.x();
+    const int end_botton = _reshaped_output.info()->tensor_shape().y() - (kernel_size.y() - conv_info.pad_bottom() - 1) - pad_valid.y();
+    if(_has_bias)
+    {
+        _memory_group.manage(&_bias_output);
+    }
+    else if(_needs_permute)
+    {
+        output_to_use = &_permuted_output;
+        _memory_group.manage(&_permuted_output);
+    }
+    _extract_output_func.configure(&_reshaped_output, output_to_use, Coordinates(start_left, start_top), Coordinates(end_right, end_botton));
+    _reshaped_output.allocator()->allocate();
+    _itransformed_output.allocator()->allocate();
+
+    // Add bias
+    if(biases != nullptr)
+    {
+        output_to_use = output;
+        if(_needs_permute)
+        {
+            output_to_use = &_permuted_output;
+            _memory_group.manage(&_permuted_output);
+        }
+        auto_init_if_empty(*output_to_use->info(), *_bias_output.info());
+        _bias_add_func.configure(&_bias_output, &_permuted_bias, output_to_use, ConvertPolicy::WRAP);
+        _bias_output.allocator()->allocate();
+    }
+
+    // Permute output
+    if(_needs_permute)
+    {
+        // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
+        _permuted_output.info()->set_data_layout(DataLayout::NCHW);
+        _permute_output_func.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
+
+        // Allocate tensors
+        _permuted_output.allocator()->allocate();
+    }
+
+    // Configure Activation Layer
+    _is_activationlayer_enabled = act_info.enabled();
+    if(_is_activationlayer_enabled)
+    {
+        _activation_layer_func.configure(output, nullptr, act_info);
+    }
+
+    // Setup flip axis data
+    _flip_axis.allocator()->allocate();
+
+    auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
+    axis_data[0]   = 0;
+    axis_data[1]   = 1;
+}
+
+Status NEFFTConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
+                                       const ActivationLayerInfo &act_info)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
+
+    // Get indices for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
+
+    // Strides
+    const auto strides = conv_info.stride();
+    ARM_COMPUTE_RETURN_ERROR_ON(strides.first != strides.second && strides.first != 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(kernel_size.x() != kernel_size.y());
+    ARM_COMPUTE_RETURN_ERROR_ON(conv_info.pad_left() != (kernel_size.x() / 2) || conv_info.pad_right() != (kernel_size.x() / 2));
+    ARM_COMPUTE_RETURN_ERROR_ON(conv_info.pad_top() != (kernel_size.y() / 2) || conv_info.pad_bottom() != (kernel_size.y() / 2));
+
+    // Validate biases
+    if(biases != nullptr)
+    {
+        const size_t idx_channels = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
+        ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_channels] != biases->tensor_shape().x());
+    }
+
+    // Checks performed when output is configured
+    if((output != nullptr) && (output->total_size() != 0))
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
+        ARM_COMPUTE_RETURN_ERROR_ON((input->tensor_shape()[idx_height] != output->tensor_shape()[idx_height]) || (input->tensor_shape()[idx_width] != output->tensor_shape()[idx_width]));
+
+        // Validate Activation Layer
+        if(act_info.enabled())
+        {
+            ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
+        }
+    }
+
+    return Status{};
+}
+
+void NEFFTConvolutionLayer::run()
+{
+    prepare();
+
+    MemoryGroupResourceScope scope_mg(_memory_group);
+
+    // Transform input
+    if(_needs_permute)
+    {
+        _permute_input_func.run();
+    }
+    _pad_input_func.run();
+    _transform_input_func.run();
+
+    // Perform operations to frequency domain
+    _prod_func.run();
+
+    _reduce_func.run();
+
+    // Transform output
+    _itransform_output_func.run();
+    _reshaped_output.allocator()->import_memory(_itransformed_output.buffer());
+    _extract_output_func.run();
+
+    // Add bias
+    if(_has_bias)
+    {
+        _bias_add_func.run();
+    }
+    if(_needs_permute)
+    {
+        _permute_output_func.run();
+    }
+
+    // Run activation layer
+    if(_is_activationlayer_enabled)
+    {
+        _activation_layer_func.run();
+    }
+}
+
+void NEFFTConvolutionLayer::prepare()
+{
+    if(!_is_prepared)
+    {
+        // Permute bias to NCHW
+        if(_original_bias != nullptr)
+        {
+            _permuted_bias.allocator()->allocate();
+            _permute_bias_func.run();
+            _original_bias->mark_as_unused();
+        }
+
+        const ITensor *cur_weights = _original_weights;
+
+        // Permute weights
+        if(_needs_permute)
+        {
+            ARM_COMPUTE_ERROR_ON(!cur_weights->is_used());
+
+            _permuted_weights.allocator()->allocate();
+            _permute_weights_func.run();
+            cur_weights->mark_as_unused();
+            cur_weights = &_permuted_weights;
+        }
+
+        // Flip weights
+        _flipped_weights.allocator()->allocate();
+        _flip_weights_func.run();
+        cur_weights->mark_as_unused();
+
+        // Pad weights
+        _padded_weights.allocator()->allocate();
+        _pad_weights_func.run();
+        _flipped_weights.mark_as_unused();
+        _flipped_weights.allocator()->free();
+
+        // Transform weights to frequency domain
+        _transformed_weights.allocator()->allocate();
+        _transform_weights_func->run();
+        _transform_weights_func.reset();
+
+        _padded_weights.mark_as_unused();
+        _padded_weights.allocator()->free();
+
+        _is_prepared = true;
+    }
+}
+} // namespace arm_compute
diff --git a/src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp b/src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp
index cf6b984..ef28fe9 100644
--- a/src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp
+++ b/src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2018 ARM Limited.
+ * Copyright (c) 2016-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -29,8 +29,8 @@
 
 #include <utility>
 
-using namespace arm_compute;
-
+namespace arm_compute
+{
 void NEPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
 {
     auto k = arm_compute::support::cpp14::make_unique<NEPixelWiseMultiplicationKernel>();
@@ -51,3 +51,27 @@
 {
     return NEPixelWiseMultiplicationKernel::validate(input1, input2, output, scale, overflow_policy, rounding_policy);
 }
+
+void NEComplexPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output)
+{
+    auto k = arm_compute::support::cpp14::make_unique<NEComplexPixelWiseMultiplicationKernel>();
+    k->configure(input1, input2, output);
+    _kernel = std::move(k);
+
+    if(output->info()->dimension(0) > 1)
+    {
+        ITensor *broadcasted_info = (input1->info()->dimension(0) == 1) ? input1 : input2;
+
+        if(broadcasted_info->info()->dimension(0) == 1)
+        {
+            _border_handler.configure(broadcasted_info, _kernel->border_size(), BorderMode::REPLICATE);
+        }
+    }
+}
+
+Status NEComplexPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+{
+    return NEComplexPixelWiseMultiplicationKernel::validate(input1, input2, output);
+}
+
+} // namespace arm_compute
diff --git a/src/runtime/NEON/functions/NEReductionOperation.cpp b/src/runtime/NEON/functions/NEReductionOperation.cpp
index 9f81a40..a0aed96 100644
--- a/src/runtime/NEON/functions/NEReductionOperation.cpp
+++ b/src/runtime/NEON/functions/NEReductionOperation.cpp
@@ -66,7 +66,8 @@
 
 void NEReductionOperation::configure(ITensor *input, ITensor *output, unsigned int axis, ReductionOperation op)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+    ARM_COMPUTE_ERROR_THROW_ON(NEReductionOperation::validate(input->info(), output->info(), axis, op));
 
     // Configure reduction kernel
     _reduction_kernel.configure(input, output, axis, op);