COMPMID-1717: CL: Implement Maximum, Minimum, SquaredDifference

Change-Id: Ice653e48211053bd3cd20a693bd76de6b4efc370
Reviewed-on: https://review.mlplatform.org/270
Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/tests/validation/CL/ArithmeticAddition.cpp b/tests/validation/CL/ArithmeticAddition.cpp
index 09f1b7c..6f7aa94 100644
--- a/tests/validation/CL/ArithmeticAddition.cpp
+++ b/tests/validation/CL/ArithmeticAddition.cpp
@@ -24,7 +24,7 @@
 #include "arm_compute/core/Types.h"
 #include "arm_compute/runtime/CL/CLTensor.h"
 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
-#include "arm_compute/runtime/CL/functions/CLArithmeticAddition.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
 #include "tests/CL/CLAccessor.h"
 #include "tests/PaddingCalculator.h"
 #include "tests/datasets/ConvertPolicyDataset.h"
@@ -43,7 +43,7 @@
 {
 namespace
 {
-constexpr unsigned int num_elems_processed_per_iteration = 8;
+constexpr unsigned int num_elems_processed_per_iteration = 16;
 /** Input data sets **/
 const auto ArithmeticAdditionU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)), framework::dataset::make("DataType",
                                                  DataType::U8));
diff --git a/tests/validation/CL/ArithmeticDivision.cpp b/tests/validation/CL/ArithmeticDivision.cpp
index 5d4fa1f..87039d7 100644
--- a/tests/validation/CL/ArithmeticDivision.cpp
+++ b/tests/validation/CL/ArithmeticDivision.cpp
@@ -24,7 +24,7 @@
 #include "arm_compute/core/Types.h"
 #include "arm_compute/runtime/CL/CLTensor.h"
 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
-#include "arm_compute/runtime/CL/functions/CLArithmeticDivision.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
 #include "tests/CL/CLAccessor.h"
 #include "tests/PaddingCalculator.h"
 #include "tests/datasets/ConvertPolicyDataset.h"
@@ -33,7 +33,7 @@
 #include "tests/framework/Macros.h"
 #include "tests/framework/datasets/Datasets.h"
 #include "tests/validation/Validation.h"
-#include "tests/validation/fixtures/ArithmeticDivisionFixture.h"
+#include "tests/validation/fixtures/ElementwiseOperationsFixture.h"
 
 namespace arm_compute
 {
@@ -45,6 +45,20 @@
 {
 RelativeTolerance<float> tolerance_fp32(0.000001f);
 RelativeTolerance<float> tolerance_fp16(0.001f);
+
+constexpr unsigned int num_elems_processed_per_iteration = 16;
+/** Input data sets **/
+const auto ArithmeticDivisionU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)), framework::dataset::make("DataType",
+                                                 DataType::U8));
+const auto ArithmeticDivisionQASYMM8Dataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), framework::dataset::make("DataType", DataType::QASYMM8)),
+                                                      framework::dataset::make("DataType",
+                                                                               DataType::QASYMM8));
+const auto ArithmeticDivisionS16Dataset = combine(combine(framework::dataset::make("DataType", { DataType::U8, DataType::S16 }), framework::dataset::make("DataType", DataType::S16)),
+                                                  framework::dataset::make("DataType", DataType::S16));
+const auto ArithmeticDivisionFP16Dataset = combine(combine(framework::dataset::make("DataType", DataType::F16), framework::dataset::make("DataType", DataType::F16)),
+                                                   framework::dataset::make("DataType", DataType::F16));
+const auto ArithmeticDivisionFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
+                                                   framework::dataset::make("DataType", DataType::F32));
 } // namespace
 
 TEST_SUITE(CL)
@@ -53,25 +67,25 @@
 // *INDENT-OFF*
 // clang-format off
 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
-               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Wrong data type
+               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
                                                         TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
                                                         TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
                                                         TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
-                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
                                                       }),
                framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
                                                        TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
-                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
                                                      })),
                framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
                                                        TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
-                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
                                                      })),
-               framework::dataset::make("Expected", { false, false, false, false, true })),
+               framework::dataset::make("Expected", { true, true, false, false, false})),
                input1_info, input2_info, output_info, expected)
 {
     ARM_COMPUTE_EXPECT(bool(CLArithmeticDivision::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
@@ -82,17 +96,128 @@
 template <typename T>
 using CLArithmeticDivisionFixture = ArithmeticDivisionValidationFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
 
-TEST_SUITE(Float)
-TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
+TEST_SUITE(U8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::U8);
+
+    // Create and Configure function
+    CLArithmeticDivision add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ArithmeticDivisionU8Dataset))
 {
     // Validate output
-    validate(CLAccessor(_target), _reference, tolerance_fp16);
+    validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // FP16
+TEST_SUITE_END()
+
+template <typename T>
+using CLArithmeticDivisionQuantizedFixture = ArithmeticDivisionValidationQuantizedFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
+
+TEST_SUITE(Quantized)
+TEST_SUITE(QASYMM8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+
+    // Create and Configure function
+    CLArithmeticDivision add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
+                       ArithmeticDivisionQASYMM8Dataset),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) }))
+
+                      )
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32, 0.01);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE(S16)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("DataType", { DataType::U8, DataType::S16 })),
+               shape, data_type)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, data_type);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::S16);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::S16);
+
+    // Create and Configure function
+    CLArithmeticDivision add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<int16_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ArithmeticDivisionS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticDivisionFixture<int16_t>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ArithmeticDivisionS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(Float)
+TEST_SUITE(FP16)
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ArithmeticDivisionFP16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+TEST_SUITE_END()
 
 TEST_SUITE(FP32)
-DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, concat(datasets::SmallShapes(), datasets::LargeShapes()), shape)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
 {
     // Create tensors
     CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::F32);
@@ -100,27 +225,27 @@
     CLTensor dst      = create_tensor<CLTensor>(shape, DataType::F32);
 
     // Create and Configure function
-    CLArithmeticDivision div;
-    div.configure(&ref_src1, &ref_src2, &dst);
+    CLArithmeticDivision add;
+    add.configure(&ref_src1, &ref_src2, &dst);
 
     // Validate valid region
     const ValidRegion valid_region = shape_to_valid_region(shape);
     validate(dst.info()->valid_region(), valid_region);
 
     // Validate padding
-    const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
     validate(ref_src1.info()->padding(), padding);
     validate(ref_src2.info()->padding(), padding);
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ArithmeticDivisionFP32Dataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticDivisionFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), framework::dataset::make("DataType", DataType::F32)))
+FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticDivisionFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ArithmeticDivisionFP32Dataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
@@ -130,23 +255,23 @@
 using CLArithmeticDivisionBroadcastFixture = ArithmeticDivisionBroadcastValidationFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
 
 FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticDivisionBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapesBroadcast(),
-                       framework::dataset::make("DataType", DataType::F32)))
+                       ArithmeticDivisionFP32Dataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
 FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticDivisionBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapesBroadcast(),
-                       framework::dataset::make("DataType", DataType::F32)))
+                       ArithmeticDivisionFP32Dataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
-TEST_SUITE_END() // FP32
-TEST_SUITE_END() // Float
+TEST_SUITE_END()
+TEST_SUITE_END()
 
-TEST_SUITE_END() // ArithmeticDivision
-TEST_SUITE_END() // CL
+TEST_SUITE_END()
+TEST_SUITE_END()
 } // namespace validation
 } // namespace test
 } // namespace arm_compute
diff --git a/tests/validation/CL/ArithmeticSubtraction.cpp b/tests/validation/CL/ArithmeticSubtraction.cpp
index cd13f42..2cf410f 100644
--- a/tests/validation/CL/ArithmeticSubtraction.cpp
+++ b/tests/validation/CL/ArithmeticSubtraction.cpp
@@ -24,7 +24,7 @@
 #include "arm_compute/core/Types.h"
 #include "arm_compute/runtime/CL/CLTensor.h"
 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
-#include "arm_compute/runtime/CL/functions/CLArithmeticSubtraction.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
 #include "tests/CL/CLAccessor.h"
 #include "tests/PaddingCalculator.h"
 #include "tests/datasets/ConvertPolicyDataset.h"
@@ -43,6 +43,7 @@
 {
 namespace
 {
+constexpr unsigned int num_elems_processed_per_iteration = 16;
 /** Input data sets **/
 const auto ArithmeticSubtractionU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)),
                                                     framework::dataset::make("DataType",
@@ -64,26 +65,26 @@
 // *INDENT-OFF*
 // clang-format off
 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
-        framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                 TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                 TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
-                                                 TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
-                                                 TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
-        }),
-        framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
-                                                TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
-        })),
-        framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
-                                                TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
-                                                TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
-        })),
-        framework::dataset::make("Expected", { true, true, false, false, false})),
-        input1_info, input2_info, output_info, expected)
+               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
+                                                      }),
+               framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("Expected", { true, true, false, false, false})),
+               input1_info, input2_info, output_info, expected)
 {
     ARM_COMPUTE_EXPECT(bool(CLArithmeticSubtraction::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), ConvertPolicy::WRAP)) == expected, framework::LogLevel::ERRORS);
 }
@@ -103,15 +104,15 @@
     CLTensor dst      = create_tensor<CLTensor>(shape, DataType::U8);
 
     // Create and Configure function
-    CLArithmeticSubtraction sub;
-    sub.configure(&ref_src1, &ref_src2, &dst, policy);
+    CLArithmeticSubtraction add;
+    add.configure(&ref_src1, &ref_src2, &dst, policy);
 
     // Validate valid region
     const ValidRegion valid_region = shape_to_valid_region(shape);
     validate(dst.info()->valid_region(), valid_region);
 
     // Validate padding
-    const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
     validate(ref_src1.info()->padding(), padding);
     validate(ref_src2.info()->padding(), padding);
     validate(dst.info()->padding(), padding);
@@ -123,7 +124,7 @@
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // U8
+TEST_SUITE_END()
 
 template <typename T>
 using CLArithmeticSubtractionQuantizedFixture = ArithmeticSubtractionValidationQuantizedFixture<CLTensor, CLAccessor, CLArithmeticSubtraction, T>;
@@ -147,7 +148,7 @@
     validate(dst.info()->valid_region(), valid_region);
 
     // Validate padding
-    const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
     validate(ref_src1.info()->padding(), padding);
     validate(ref_src2.info()->padding(), padding);
     validate(dst.info()->padding(), padding);
@@ -165,8 +166,8 @@
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // QASYMM8
-TEST_SUITE_END() // Quantized
+TEST_SUITE_END()
+TEST_SUITE_END()
 
 TEST_SUITE(S16)
 DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("DataType", { DataType::U8, DataType::S16 })),
@@ -179,15 +180,15 @@
     CLTensor dst      = create_tensor<CLTensor>(shape, DataType::S16);
 
     // Create and Configure function
-    CLArithmeticSubtraction sub;
-    sub.configure(&ref_src1, &ref_src2, &dst, policy);
+    CLArithmeticSubtraction add;
+    add.configure(&ref_src1, &ref_src2, &dst, policy);
 
     // Validate valid region
     const ValidRegion valid_region = shape_to_valid_region(shape);
     validate(dst.info()->valid_region(), valid_region);
 
     // Validate padding
-    const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
     validate(ref_src1.info()->padding(), padding);
     validate(ref_src2.info()->padding(), padding);
     validate(dst.info()->padding(), padding);
@@ -206,7 +207,7 @@
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // S16
+TEST_SUITE_END()
 
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
@@ -216,7 +217,7 @@
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // FP16
+TEST_SUITE_END()
 
 TEST_SUITE(FP32)
 DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
@@ -228,15 +229,15 @@
     CLTensor dst      = create_tensor<CLTensor>(shape, DataType::F32);
 
     // Create and Configure function
-    CLArithmeticSubtraction sub;
-    sub.configure(&ref_src1, &ref_src2, &dst, policy);
+    CLArithmeticSubtraction add;
+    add.configure(&ref_src1, &ref_src2, &dst, policy);
 
     // Validate valid region
     const ValidRegion valid_region = shape_to_valid_region(shape);
     validate(dst.info()->valid_region(), valid_region);
 
     // Validate padding
-    const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
     validate(ref_src1.info()->padding(), padding);
     validate(ref_src2.info()->padding(), padding);
     validate(dst.info()->padding(), padding);
@@ -274,11 +275,11 @@
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
-TEST_SUITE_END() // FP32
-TEST_SUITE_END() // Float
+TEST_SUITE_END()
+TEST_SUITE_END()
 
-TEST_SUITE_END() // ArithmeticSubtraction
-TEST_SUITE_END() // CL
+TEST_SUITE_END()
+TEST_SUITE_END()
 } // namespace validation
 } // namespace test
-} // namespace arm_compute
\ No newline at end of file
+} // namespace arm_compute
diff --git a/tests/validation/CL/ElementwiseMax.cpp b/tests/validation/CL/ElementwiseMax.cpp
new file mode 100644
index 0000000..894688f
--- /dev/null
+++ b/tests/validation/CL/ElementwiseMax.cpp
@@ -0,0 +1,277 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Types.h"
+#include "arm_compute/runtime/CL/CLTensor.h"
+#include "arm_compute/runtime/CL/CLTensorAllocator.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
+#include "tests/CL/CLAccessor.h"
+#include "tests/PaddingCalculator.h"
+#include "tests/datasets/ConvertPolicyDataset.h"
+#include "tests/datasets/ShapeDatasets.h"
+#include "tests/framework/Asserts.h"
+#include "tests/framework/Macros.h"
+#include "tests/framework/datasets/Datasets.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/fixtures/ElementwiseOperationsFixture.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace
+{
+RelativeTolerance<float> tolerance_fp32(0.000001f);
+RelativeTolerance<float> tolerance_fp16(0.001f);
+
+constexpr unsigned int num_elems_processed_per_iteration = 16;
+/** Input data sets **/
+const auto ElementwiseMaxU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)), framework::dataset::make("DataType",
+                                             DataType::U8));
+const auto ElementwiseMaxQASYMM8Dataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), framework::dataset::make("DataType", DataType::QASYMM8)),
+                                                  framework::dataset::make("DataType",
+                                                                           DataType::QASYMM8));
+const auto ElementwiseMaxS16Dataset = combine(combine(framework::dataset::make("DataType", { DataType::U8, DataType::S16 }), framework::dataset::make("DataType", DataType::S16)),
+                                              framework::dataset::make("DataType", DataType::S16));
+const auto ElementwiseMaxFP16Dataset = combine(combine(framework::dataset::make("DataType", DataType::F16), framework::dataset::make("DataType", DataType::F16)),
+                                               framework::dataset::make("DataType", DataType::F16));
+const auto ElementwiseMaxFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
+                                               framework::dataset::make("DataType", DataType::F32));
+} // namespace
+
+TEST_SUITE(CL)
+TEST_SUITE(ElementwiseMax)
+
+// *INDENT-OFF*
+// clang-format off
+DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
+               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
+                                                      }),
+               framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("Expected", { true, true, false, false, false})),
+               input1_info, input2_info, output_info, expected)
+{
+    ARM_COMPUTE_EXPECT(bool(CLElementwiseMax::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
+}
+// clang-format on
+// *INDENT-ON*
+
+template <typename T>
+using CLElementwiseMaxFixture = ElementwiseMaxValidationFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
+
+TEST_SUITE(U8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::U8);
+
+    // Create and Configure function
+    CLElementwiseMax add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMaxU8Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+template <typename T>
+using CLElementwiseMaxQuantizedFixture = ElementwiseMaxValidationQuantizedFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
+
+TEST_SUITE(Quantized)
+TEST_SUITE(QASYMM8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+
+    // Create and Configure function
+    CLElementwiseMax add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
+                                                                                                                       ElementwiseMaxQASYMM8Dataset),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) }))
+
+                      )
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32, 0.01);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE(S16)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("DataType", { DataType::U8, DataType::S16 })),
+               shape, data_type)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, data_type);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::S16);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::S16);
+
+    // Create and Configure function
+    CLElementwiseMax add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<int16_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMaxS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseMaxFixture<int16_t>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseMaxS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(Float)
+TEST_SUITE(FP16)
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMaxFP16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(FP32)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::F32);
+
+    // Create and Configure function
+    CLElementwiseMax add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMaxFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseMaxFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseMaxFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+template <typename T>
+using CLElementwiseMaxBroadcastFixture = ElementwiseMaxBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
+
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMaxBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseMaxFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLElementwiseMaxBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapesBroadcast(),
+                       ElementwiseMaxFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE_END()
+TEST_SUITE_END()
+} // namespace validation
+} // namespace test
+} // namespace arm_compute
diff --git a/tests/validation/CL/ElementwiseMin.cpp b/tests/validation/CL/ElementwiseMin.cpp
new file mode 100644
index 0000000..05abfc8
--- /dev/null
+++ b/tests/validation/CL/ElementwiseMin.cpp
@@ -0,0 +1,277 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Types.h"
+#include "arm_compute/runtime/CL/CLTensor.h"
+#include "arm_compute/runtime/CL/CLTensorAllocator.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
+#include "tests/CL/CLAccessor.h"
+#include "tests/PaddingCalculator.h"
+#include "tests/datasets/ConvertPolicyDataset.h"
+#include "tests/datasets/ShapeDatasets.h"
+#include "tests/framework/Asserts.h"
+#include "tests/framework/Macros.h"
+#include "tests/framework/datasets/Datasets.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/fixtures/ElementwiseOperationsFixture.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace
+{
+RelativeTolerance<float> tolerance_fp32(0.000001f);
+RelativeTolerance<float> tolerance_fp16(0.001f);
+
+constexpr unsigned int num_elems_processed_per_iteration = 16;
+/** Input data sets **/
+const auto ElementwiseMinU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)), framework::dataset::make("DataType",
+                                             DataType::U8));
+const auto ElementwiseMinQASYMM8Dataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), framework::dataset::make("DataType", DataType::QASYMM8)),
+                                                  framework::dataset::make("DataType",
+                                                                           DataType::QASYMM8));
+const auto ElementwiseMinS16Dataset = combine(combine(framework::dataset::make("DataType", { DataType::U8, DataType::S16 }), framework::dataset::make("DataType", DataType::S16)),
+                                              framework::dataset::make("DataType", DataType::S16));
+const auto ElementwiseMinFP16Dataset = combine(combine(framework::dataset::make("DataType", DataType::F16), framework::dataset::make("DataType", DataType::F16)),
+                                               framework::dataset::make("DataType", DataType::F16));
+const auto ElementwiseMinFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
+                                               framework::dataset::make("DataType", DataType::F32));
+} // namespace
+
+TEST_SUITE(CL)
+TEST_SUITE(ElementwiseMin)
+
+// *INDENT-OFF*
+// clang-format off
+DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
+               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
+                                                      }),
+               framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("Expected", { true, true, false, false, false})),
+               input1_info, input2_info, output_info, expected)
+{
+    ARM_COMPUTE_EXPECT(bool(CLElementwiseMin::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
+}
+// clang-format on
+// *INDENT-ON*
+
+template <typename T>
+using CLElementwiseMinFixture = ElementwiseMinValidationFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
+
+TEST_SUITE(U8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::U8);
+
+    // Create and Configure function
+    CLElementwiseMin add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMinU8Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+template <typename T>
+using CLElementwiseMinQuantizedFixture = ElementwiseMinValidationQuantizedFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
+
+TEST_SUITE(Quantized)
+TEST_SUITE(QASYMM8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+
+    // Create and Configure function
+    CLElementwiseMin add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
+                                                                                                                       ElementwiseMinQASYMM8Dataset),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                                                                                                                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) }))
+
+                      )
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32, 0.01);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE(S16)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("DataType", { DataType::U8, DataType::S16 })),
+               shape, data_type)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, data_type);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::S16);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::S16);
+
+    // Create and Configure function
+    CLElementwiseMin add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<int16_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMinS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseMinFixture<int16_t>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseMinS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(Float)
+TEST_SUITE(FP16)
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMinFP16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(FP32)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::F32);
+
+    // Create and Configure function
+    CLElementwiseMin add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseMinFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseMinFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseMinFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+template <typename T>
+using CLElementwiseMinBroadcastFixture = ElementwiseMinBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
+
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMinBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseMinFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLElementwiseMinBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapesBroadcast(),
+                       ElementwiseMinFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE_END()
+TEST_SUITE_END()
+} // namespace validation
+} // namespace test
+} // namespace arm_compute
diff --git a/tests/validation/CL/ElementwiseSquaredDiff.cpp b/tests/validation/CL/ElementwiseSquaredDiff.cpp
new file mode 100644
index 0000000..c00f95b
--- /dev/null
+++ b/tests/validation/CL/ElementwiseSquaredDiff.cpp
@@ -0,0 +1,278 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Types.h"
+#include "arm_compute/runtime/CL/CLTensor.h"
+#include "arm_compute/runtime/CL/CLTensorAllocator.h"
+#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
+#include "tests/CL/CLAccessor.h"
+#include "tests/PaddingCalculator.h"
+#include "tests/datasets/ConvertPolicyDataset.h"
+#include "tests/datasets/ShapeDatasets.h"
+#include "tests/framework/Asserts.h"
+#include "tests/framework/Macros.h"
+#include "tests/framework/datasets/Datasets.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/fixtures/ElementwiseOperationsFixture.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace
+{
+RelativeTolerance<float> tolerance_fp32(0.000001f);
+RelativeTolerance<float> tolerance_fp16(0.001f);
+
+constexpr unsigned int num_elems_processed_per_iteration = 16;
+/** Input data sets **/
+const auto ElementwiseSquaredDiffU8Dataset = combine(combine(framework::dataset::make("DataType", DataType::U8), framework::dataset::make("DataType", DataType::U8)),
+                                                     framework::dataset::make("DataType",
+                                                                              DataType::U8));
+const auto ElementwiseSquaredDiffQASYMM8Dataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), framework::dataset::make("DataType", DataType::QASYMM8)),
+                                                          framework::dataset::make("DataType",
+                                                                                   DataType::QASYMM8));
+const auto ElementwiseSquaredDiffS16Dataset = combine(combine(framework::dataset::make("DataType", { DataType::U8, DataType::S16 }), framework::dataset::make("DataType", DataType::S16)),
+                                                      framework::dataset::make("DataType", DataType::S16));
+const auto ElementwiseSquaredDiffFP16Dataset = combine(combine(framework::dataset::make("DataType", DataType::F16), framework::dataset::make("DataType", DataType::F16)),
+                                                       framework::dataset::make("DataType", DataType::F16));
+const auto ElementwiseSquaredDiffFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
+                                                       framework::dataset::make("DataType", DataType::F32));
+} // namespace
+
+TEST_SUITE(CL)
+TEST_SUITE(ElementwiseSquaredDiff)
+
+// *INDENT-OFF*
+// clang-format off
+DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
+               framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),      // Window shrink
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),      // Invalid data type combination
+                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),     // Mismatching shapes
+                                                      }),
+               framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
+                                                       TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
+                                                     })),
+               framework::dataset::make("Expected", { true, true, false, false, false})),
+               input1_info, input2_info, output_info, expected)
+{
+    ARM_COMPUTE_EXPECT(bool(CLElementwiseSquaredDiff::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
+}
+// clang-format on
+// *INDENT-ON*
+
+template <typename T>
+using CLElementwiseSquaredDiffFixture = ElementwiseSquaredDiffValidationFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
+
+TEST_SUITE(U8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::U8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::U8);
+
+    // Create and Configure function
+    CLElementwiseSquaredDiff add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseSquaredDiffU8Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+template <typename T>
+using CLElementwiseSquaredDiffQuantizedFixture = ElementwiseSquaredDiffValidationQuantizedFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
+
+TEST_SUITE(Quantized)
+TEST_SUITE(QASYMM8)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::QASYMM8);
+
+    // Create and Configure function
+    CLElementwiseSquaredDiff add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
+                       ElementwiseSquaredDiffQASYMM8Dataset),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                       framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) }))
+
+                      )
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32, 0.01);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE(S16)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()), framework::dataset::make("DataType", { DataType::U8, DataType::S16 })),
+               shape, data_type)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, data_type);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::S16);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::S16);
+
+    // Create and Configure function
+    CLElementwiseSquaredDiff add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<int16_t>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseSquaredDiffS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseSquaredDiffFixture<int16_t>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseSquaredDiffS16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(Float)
+TEST_SUITE(FP16)
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP16Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+TEST_SUITE_END()
+
+TEST_SUITE(FP32)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::concat(datasets::SmallShapes(), datasets::LargeShapes()),
+               shape)
+{
+    // Create tensors
+    CLTensor ref_src1 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor ref_src2 = create_tensor<CLTensor>(shape, DataType::F32);
+    CLTensor dst      = create_tensor<CLTensor>(shape, DataType::F32);
+
+    // Create and Configure function
+    CLElementwiseSquaredDiff add;
+    add.configure(&ref_src1, &ref_src2, &dst);
+
+    // Validate valid region
+    const ValidRegion valid_region = shape_to_valid_region(shape);
+    validate(dst.info()->valid_region(), valid_region);
+
+    // Validate padding
+    const PaddingSize padding = PaddingCalculator(shape.x(), num_elems_processed_per_iteration).required_padding();
+    validate(ref_src1.info()->padding(), padding);
+    validate(ref_src2.info()->padding(), padding);
+    validate(dst.info()->padding(), padding);
+}
+
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLElementwiseSquaredDiffFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ElementwiseSquaredDiffFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+template <typename T>
+using CLElementwiseSquaredDiffBroadcastFixture = ElementwiseSquaredDiffBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
+
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseSquaredDiffBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseSquaredDiffFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLElementwiseSquaredDiffBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapesBroadcast(),
+                       ElementwiseSquaredDiffFP32Dataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+TEST_SUITE_END()
+TEST_SUITE_END()
+
+TEST_SUITE_END()
+TEST_SUITE_END()
+} // namespace validation
+} // namespace test
+} // namespace arm_compute