Make NEON Pooling kernels and functions state-less

Partially resolves COMPMID-3999

Change-Id: Ib39d40694df5c5f0a9401488e0c3af3ac26e8c55
Signed-off-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4984
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.cpp b/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.cpp
new file mode 100644
index 0000000..19a0e90
--- /dev/null
+++ b/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.cpp
@@ -0,0 +1,276 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/NEON/INEKernel.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+using namespace arm_compute::misc::shape_calculator;
+
+void CpuPoolingAssemblyWrapperKernel::configure(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+
+    // dst initialization if not yet initialized
+    auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, info)));
+
+    const bool requantize = src->quantization_info() != dst->quantization_info();
+
+    switch(src->data_type())
+    {
+        case DataType::QASYMM8:
+            if(requantize)
+            {
+                create_arm_pooling_requant<uint8_t, uint8_t>(src, dst, info, cpu_info);
+            }
+            else
+            {
+                create_arm_pooling<uint8_t, uint8_t>(src, dst, info, cpu_info);
+            }
+            break;
+        case DataType::QASYMM8_SIGNED:
+            if(requantize)
+            {
+                create_arm_pooling_requant<int8_t, int8_t>(src, dst, info, cpu_info);
+            }
+            else
+            {
+                create_arm_pooling<int8_t, int8_t>(src, dst, info, cpu_info);
+            }
+            break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+        case DataType::F16:
+            create_arm_pooling<float16_t, float16_t>(src, dst, info, cpu_info);
+            break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+        case DataType::F32:
+            create_arm_pooling<float, float>(src, dst, info, cpu_info);
+            break;
+        default:
+            break;
+    }
+
+    Window win = calculate_max_window(*dst, Steps());
+    INEKernel::configure(win);
+}
+
+Status CpuPoolingAssemblyWrapperKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+
+#ifndef __aarch64__
+    ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
+#endif /* __aarch64__ */
+    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG((src->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.pool_type != PoolingType::AVG) && (info.pool_type != PoolingType::MAX),
+                                    "Only AVG and MAX pooling are supported by assembly kernels");
+
+    if(dst->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
+
+        const auto src_qinfo = src->quantization_info().uniform();
+        const auto dst_qinfo = dst->quantization_info().uniform();
+
+        if(src_qinfo != dst_qinfo)
+        {
+            const float multiplier = src_qinfo.scale / dst_qinfo.scale;
+            int32_t     dst_multiplier{};
+            int32_t     dst_shift{};
+            ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift));
+        }
+        else
+        {
+            if(src->data_type() == DataType::QASYMM8)
+            {
+                const bool has_padding = info.pad_stride_info.has_padding();
+                ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
+            }
+        }
+    }
+    else
+    {
+        if(src->data_type() == DataType::QASYMM8)
+        {
+            // If dst is not configured, the quantization info are the same
+            const bool has_padding = info.pad_stride_info.has_padding();
+            ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
+        }
+    }
+    return Status{};
+}
+
+void CpuPoolingAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_UNUSED(window);
+    ARM_COMPUTE_UNUSED(info);
+
+    ARM_COMPUTE_ERROR_ON(tensors.empty());
+
+    const ITensor *src       = tensors.get_const_tensor(TensorType::ACL_SRC);
+    ITensor       *dst       = tensors.get_tensor(TensorType::ACL_DST_0);
+    ITensor       *workspace = tensors.get_tensor(TensorType::ACL_DST_1);
+
+    const auto in_ptr        = src->buffer() + src->info()->offset_first_element_in_bytes();
+    auto       out_ptr       = dst->buffer() + dst->info()->offset_first_element_in_bytes();
+    auto       working_space = workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
+
+    const auto src_shape   = src->info()->tensor_shape();
+    const auto dst_shape   = dst->info()->tensor_shape();
+    const auto src_padding = src->info()->padding();
+    const auto dst_padding = dst->info()->padding();
+
+    const size_t ld_src_col   = src_shape[0] + src_padding.left + src_padding.right;
+    const size_t ld_src_row   = ld_src_col * (src_shape[1] + src_padding.top + src_padding.bottom);
+    const size_t ld_src_batch = ld_src_row * src_shape[2];
+    const size_t ld_dst_col   = dst_shape[0] + dst_padding.left + dst_padding.right;
+    const size_t ld_dst_row   = ld_dst_col * (dst_shape[1] + dst_padding.top + dst_padding.bottom);
+    const size_t ld_dst_batch = ld_dst_row * dst_shape[2];
+
+    _kernel_asm->execute(in_ptr, ld_src_col, ld_src_row, ld_src_batch,
+                         out_ptr, ld_dst_col, ld_dst_row, ld_dst_batch,
+                         working_space, info.thread_id, info.num_threads);
+}
+
+size_t CpuPoolingAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
+{
+    return _kernel_asm->get_working_size(num_threads);
+}
+
+bool CpuPoolingAssemblyWrapperKernel::is_configured() const
+{
+    return _kernel_asm != nullptr;
+}
+
+template <typename Typesrc, typename Typedst>
+void CpuPoolingAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
+{
+    const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
+
+    arm_conv::pooling::PoolingWindow window{};
+    window.cols = static_cast<unsigned int>(info.pool_size.x());
+    window.rows = static_cast<unsigned int>(info.pool_size.y());
+
+    arm_conv::pooling::PoolingStride stride{};
+    std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
+
+    const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
+
+    constexpr unsigned int idx_width    = 1;
+    constexpr unsigned int idx_height   = 2;
+    constexpr unsigned int idx_channels = 0;
+    constexpr unsigned int idx_batches  = 3;
+
+    const unsigned int n_batches  = src->dimension(idx_batches);
+    const unsigned int src_rows   = src->dimension(idx_height);
+    const unsigned int src_cols   = src->dimension(idx_width);
+    const unsigned int n_channels = src->dimension(idx_channels);
+    const unsigned int dst_rows   = dst->dimension(idx_height);
+    const unsigned int dst_cols   = dst->dimension(idx_width);
+
+    arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
+
+    // Configure assembly pooling kernel
+    auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst>(args);
+    if(pooling_kernel_asm == nullptr)
+    {
+        // Configuration not supported: Leave function unconfigured:
+        return;
+    }
+
+    _kernel_asm = std::move(pooling_kernel_asm);
+}
+
+template <typename Typesrc, typename Typedst>
+void CpuPoolingAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
+{
+    const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
+
+    arm_conv::pooling::PoolingWindow window{};
+    window.cols = static_cast<unsigned int>(info.pool_size.x());
+    window.rows = static_cast<unsigned int>(info.pool_size.y());
+
+    arm_conv::pooling::PoolingStride stride{};
+    std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
+
+    const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
+
+    constexpr unsigned int idx_width    = 1;
+    constexpr unsigned int idx_height   = 2;
+    constexpr unsigned int idx_channels = 0;
+    constexpr unsigned int idx_batches  = 3;
+
+    const unsigned int n_batches  = src->dimension(idx_batches);
+    const unsigned int src_rows   = src->dimension(idx_height);
+    const unsigned int src_cols   = src->dimension(idx_width);
+    const unsigned int n_channels = src->dimension(idx_channels);
+    const unsigned int dst_rows   = dst->dimension(idx_height);
+    const unsigned int dst_cols   = dst->dimension(idx_width);
+
+    arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
+
+    const auto src_qinfo = src->quantization_info().uniform();
+    const auto dst_qinfo = dst->quantization_info().uniform();
+
+    const float multiplier = src_qinfo.scale / dst_qinfo.scale;
+    int32_t     dst_multiplier{};
+    int32_t     dst_shift{};
+    quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift);
+
+    const arm_conv::pooling::Requantize32 requant_args(src_qinfo.offset,
+                                                       dst_qinfo.offset,
+                                                       dst_shift, // left shift
+                                                       0,         // right shift
+                                                       dst_multiplier);
+
+    // Configure assembly pooling kernel with requantization
+    auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst, arm_conv::pooling::Requantize32>(args, requant_args);
+    if(pooling_kernel_asm == nullptr)
+    {
+        // Configuration not supported: Leave function unconfigured:
+        return;
+    }
+
+    _kernel_asm = std::move(pooling_kernel_asm);
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.h b/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.h
new file mode 100644
index 0000000..34ec452
--- /dev/null
+++ b/src/core/cpu/kernels/CpuPoolingAssemblyWrapperKernel.h
@@ -0,0 +1,123 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_POOLING_ASSEMBLY_WRAPPER_KERNEL_H
+#define ARM_COMPUTE_CPU_POOLING_ASSEMBLY_WRAPPER_KERNEL_H
+
+#include "arm_compute/core/Types.h"
+#include "src/core/NEON/kernels/assembly/pooling.hpp"
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+#include "pool_common.hpp"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** This class is a wrapper for the assembly kernels.
+  *
+  * Some kernels were written in assembly and highly optimised for specific
+  * CPUs like A53 or A55. The arm compute library creates an instance of
+  * CpuPoolingAssemblyWrapperKernel and other auxiliary data structures to
+  * execute a single assembly kernel in the context of an NEFunction.
+  *
+  */
+class CpuPoolingAssemblyWrapperKernel final : public ICpuKernel
+{
+public:
+    /** Constructor
+     */
+    CpuPoolingAssemblyWrapperKernel()                                   = default;
+    CpuPoolingAssemblyWrapperKernel(CpuPoolingAssemblyWrapperKernel &)  = delete;
+    CpuPoolingAssemblyWrapperKernel(CpuPoolingAssemblyWrapperKernel &&) = default;
+    CpuPoolingAssemblyWrapperKernel &operator=(CpuPoolingAssemblyWrapperKernel &) = delete;
+
+    const char *name() const override
+    {
+        return "CpuPoolingAssemblyWrapperKernel";
+    }
+
+    /** Initialise the kernel's src and dst.
+     *
+     * @param[in]  src      Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[out] dst      Destination tensor info to store the result of pooling. Data types supported: same as @p src.
+     * @param[in]  info     Pooling meta-data.
+     * @param[in]  cpu_info CPU information needed to select the most appropriate kernel.
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
+
+    /** Indicates whether or not this function can be used to process the given parameters.
+     *
+     * @param[in] src  Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in] dst  Destination tensor to store the result of pooling. Data types supported: same as @p src.
+     * @param[in] info Pooling meta-data
+     *
+     * @return a status.
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+
+    /** Get size of the workspace needed by the assembly kernel.
+     *
+     * @param[in] num_threads Maximum number of threads that are going to be spawned.
+     *
+     * @return size of workspace
+     */
+    size_t get_working_size(unsigned int num_threads) const;
+
+    /** Was the asm kernel successfully configured?
+     *
+     * @return True if the asm kernel is configured and ready to run
+     */
+    bool is_configured() const;
+
+private:
+    /** Helper function to create the assembly kernel.
+     *
+     * @param[in] src  Source tensor info.
+     * @param[in] dst  Destination tensor info.
+     * @param[in] info Pooling layer meta-data.
+     */
+    template <typename Typesrc, typename Typedst>
+    void create_arm_pooling(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
+
+    /** Helper function to create the assembly kernel with requantization support
+     *
+     * @param[in] src  Source tensor info.
+     * @param[in] dst  Destination tensor info.
+     * @param[in] info Pooling layer meta-data.
+     */
+    template <typename Typesrc, typename Typedst>
+    void create_arm_pooling_requant(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
+
+    std::unique_ptr<arm_conv::pooling::IPoolingCommon> _kernel_asm{ nullptr };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_POOLING_ASSEMBLY_WRAPPER_KERNEL_H */
diff --git a/src/core/cpu/kernels/CpuPoolingKernel.cpp b/src/core/cpu/kernels/CpuPoolingKernel.cpp
new file mode 100644
index 0000000..a29aef4
--- /dev/null
+++ b/src/core/cpu/kernels/CpuPoolingKernel.cpp
@@ -0,0 +1,2605 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuPoolingKernel.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/AccessWindowStatic.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/NEFixedPoint.h"
+#include "src/core/NEON/NEMath.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "support/ToolchainSupport.h"
+
+#include "src/core/NEON/wrapper/wrapper.h"
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+using namespace misc::shape_calculator;
+
+namespace
+{
+template <typename T>
+inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
+quantize(float val, const UniformQuantizationInfo &info)
+{
+    return quantize_qasymm8_signed(val, info);
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
+quantize(float val, const UniformQuantizationInfo &info)
+{
+    return quantize_qasymm8(val, info);
+}
+
+inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
+                                 const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+{
+    const unsigned int idx_width  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+
+    int start_x = id[idx_width] * stride_x - pad_x;
+    int start_y = id[idx_height] * stride_y - pad_y;
+
+    const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
+    const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
+    if(exclude_padding)
+    {
+        start_x = std::max(0, start_x);
+        start_y = std::max(0, start_y);
+    }
+    return 1.f / ((end_y - start_y) * (end_x - start_x));
+}
+
+template <typename T, typename TVec>
+inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
+                               const int pool_size, const int upper_bound_w, const int upper_bound_h,
+                               const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+{
+    int       start_x = (id.x() + id_offset) * stride_x - pad_x;
+    int       start_y = id.y() * stride_y - pad_y;
+    const int end_y   = std::min(start_y + pool_size, upper_bound_h);
+    if(exclude_padding)
+    {
+        start_y = std::max(0, start_y);
+    }
+
+    std::array<T, 8> elems =
+    {
+        {
+            wrapper::vgetlane(v, 0),
+            wrapper::vgetlane(v, 1),
+            wrapper::vgetlane(v, 2),
+            wrapper::vgetlane(v, 3),
+            wrapper::vgetlane(v, 4),
+            wrapper::vgetlane(v, 5),
+            wrapper::vgetlane(v, 6),
+            wrapper::vgetlane(v, 7),
+        }
+    };
+
+    for(auto &el : elems)
+    {
+        int       c_start_x = start_x;
+        const int end_x     = std::min(c_start_x + pool_size, upper_bound_w);
+        if(exclude_padding)
+        {
+            c_start_x = std::max(0, c_start_x);
+        }
+        float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
+        el *= scale;
+        start_x += step * stride_x;
+    }
+
+    v = wrapper::vsetlane(elems[0], v, 0);
+    v = wrapper::vsetlane(elems[1], v, 1);
+    v = wrapper::vsetlane(elems[2], v, 2);
+    v = wrapper::vsetlane(elems[3], v, 3);
+    v = wrapper::vsetlane(elems[4], v, 4);
+    v = wrapper::vsetlane(elems[5], v, 5);
+    v = wrapper::vsetlane(elems[6], v, 6);
+    v = wrapper::vsetlane(elems[7], v, 7);
+}
+
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info,
+                          unsigned int &pooled_w, unsigned int pooled_h, const ITensorInfo *indices, Size2D pool_size)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+
+    int                 pool_stride_x   = 0;
+    int                 pool_stride_y   = 0;
+    PoolingType         pool_type       = pool_info.pool_type;
+    const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
+    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
+
+    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
+    if(indices)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32, DataType::F16);
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
+    }
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(src->data_type()));
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(src->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding()
+                                    && (src->data_layout() == DataLayout::NHWC),
+                                    "exclude_padding equal false is not supported for AVG Pooling with padding on quantized types");
+
+    if(dst->total_size() != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
+        ARM_COMPUTE_RETURN_ERROR_ON((dst->dimension(get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
+                                    || (dst->dimension(get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
+
+        if(indices)
+        {
+            ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
+            ARM_COMPUTE_RETURN_ERROR_ON((indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
+                                        || (indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
+        }
+    }
+
+    return Status{};
+}
+
+Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0);
+    ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0);
+
+    return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, const PoolingLayerInfo &pool_info,
+                                                        unsigned int &num_elems_processed_per_iteration,
+                                                        BorderSize   &border_size,
+                                                        unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y)
+{
+    // dst auto inizialitation if not yet initialized
+    auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, pool_info)));
+    if(indices)
+    {
+        // Indices auto inizialitation if not yet initialized
+        auto_init_if_empty(*indices, (src->clone()->set_tensor_shape(compute_pool_shape(*src,
+                                                                                        pool_info)))
+                           .set_data_type(DataType::U32) /* we store the offset to the element */);
+    }
+    const auto          data_layout                  = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+    unsigned int        num_elems_read_per_iteration = 0;
+    unsigned int        num_elems_horizontal_window  = 0;
+    int                 pool_stride_x                = 0;
+    int                 pool_stride_y                = 0;
+    const int           idx_width                    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const int           idx_height                   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+    const int           src_width                    = src->dimension(idx_width);
+    const int           src_height                   = src->dimension(idx_height);
+    const PadStrideInfo pad_stride_info              = pool_info.pad_stride_info;
+    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
+    const int  pool_pad_right  = pad_stride_info.pad_right();
+    const int  pool_pad_top    = pad_stride_info.pad_top();
+    const int  pool_pad_left   = pad_stride_info.pad_left();
+    const int  pool_pad_bottom = pad_stride_info.pad_bottom();
+    const bool is_square       = pool_size_x == pool_size_y;
+
+    // Check dst dimensions
+    std::tie(pooled_w, pooled_h) = scaled_dimensions(src->dimension(idx_width),
+                                                     src->dimension(idx_height),
+                                                     pool_size_x,
+                                                     pool_size_y,
+                                                     pad_stride_info);
+
+    //If it's not squared and optimized will be executed the MxN
+    num_elems_read_per_iteration      = 1;
+    num_elems_processed_per_iteration = 1;
+    num_elems_horizontal_window       = 1;
+
+    if(is_square)
+    {
+        switch(src->data_type())
+        {
+            case DataType::QASYMM8:
+            case DataType::QASYMM8_SIGNED:
+                switch(pool_size_x)
+                {
+                    case 2:
+                        num_elems_read_per_iteration      = 16;
+                        num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
+                        num_elems_horizontal_window       = (pool_stride_x == 2) ? 8 : 16;
+                        break;
+                    case 3:
+                        num_elems_read_per_iteration      = 16;
+                        num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
+                        num_elems_horizontal_window       = (pool_stride_x == 2) ? 8 : 16;
+                        break;
+                    default:
+                        break;
+                }
+                break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+            case DataType::F16:
+                switch(pool_size_x)
+                {
+                    case 2:
+                    case 3:
+                        num_elems_read_per_iteration      = 4;
+                        num_elems_processed_per_iteration = 1;
+                        num_elems_horizontal_window       = 1;
+                        break;
+                    default:
+                        break;
+                }
+                break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+            case DataType::F32:
+                switch(pool_size_x)
+                {
+                    case 2:
+                        num_elems_read_per_iteration = 2;
+                        break;
+                    case 3:
+                        num_elems_read_per_iteration = 4; // We use vload4 for pooling3
+                        break;
+                    case 7:
+                        num_elems_read_per_iteration = 8; // We use vload8 for pooling7
+                        break;
+                    default:
+                        break;
+                }
+                num_elems_processed_per_iteration = 1;
+                num_elems_horizontal_window       = 1;
+                break;
+            default:
+                ARM_COMPUTE_ERROR("Element size not supported");
+                break;
+        }
+    }
+
+    bool   window_changed = false;
+    Window win{};
+    if(data_layout == DataLayout::NCHW)
+    {
+        // Number of iterations in X dimension
+        const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
+        // Upper limit for the number of right/bottom border elements that are accessed
+        const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - src_width;
+        const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - src_height;
+        border_size             = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
+        border_size.right       = std::max(upper_bound_w, pool_pad_right);
+        border_size.bottom      = std::max(upper_bound_h, pool_pad_bottom);
+        TensorShape dst_shape{ src->tensor_shape() };
+        dst_shape.set(0, pooled_w);
+        dst_shape.set(1, pooled_h);
+        TensorInfo dst_info(src->clone()->set_tensor_shape(dst_shape));
+        win = calculate_max_window(dst_info, Steps(num_elems_processed_per_iteration));
+        AccessWindowStatic     src_access(src, -pool_pad_left, -pool_pad_top, src_width + border_size.right, src_height + border_size.bottom);
+        AccessWindowHorizontal dst_access(dst, 0, num_elems_horizontal_window);
+        if(indices)
+        {
+            AccessWindowHorizontal indices_access(indices, 0, num_elems_horizontal_window);
+            window_changed = update_window_and_padding(win, src_access, dst_access, indices_access);
+        }
+        else
+        {
+            window_changed = update_window_and_padding(win, src_access, dst_access);
+        }
+        dst_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
+    }
+
+    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+    return std::make_pair(err, win);
+}
+
+template <typename T>
+inline T vcvtq_q32_f32(float32x4_t values);
+
+template <>
+inline uint32x4_t vcvtq_q32_f32(float32x4_t values)
+{
+    return vcvtq_u32_f32(values);
+}
+
+template <>
+inline int32x4_t vcvtq_q32_f32(float32x4_t values)
+{
+    return vcvtq_s32_f32(values);
+}
+
+template <typename T>
+inline float32x4_t vcvtq_f32_q32(T values);
+
+template <>
+inline float32x4_t vcvtq_f32_q32(uint32x4_t values)
+{
+    return vcvtq_f32_u32(values);
+}
+
+template <>
+inline float32x4_t vcvtq_f32_q32(int32x4_t values)
+{
+    return vcvtq_f32_s32(values);
+}
+
+template <typename Tout>
+inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset);
+
+template <>
+inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
+{
+    const float new_scale = quant_rescale / scale_pooling;
+    return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset));
+}
+
+template <>
+inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
+{
+    const float new_scale = quant_rescale / scale_pooling;
+    return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset));
+}
+
+template <typename Tin, typename Tout>
+inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo);
+
+template <>
+inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
+{
+    const float32x4x4_t acc =
+    {
+        {
+            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))),
+            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))),
+            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))),
+            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))),
+        }
+    };
+    return vquantize(acc, requant_qinfo);
+}
+
+template <>
+inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
+{
+    const float32x4x4_t acc =
+    {
+        {
+            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))),
+            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))),
+            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))),
+            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))),
+        }
+    };
+    return vquantize_signed(acc, requant_qinfo);
+}
+
+template <typename T>
+inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo);
+
+template <>
+inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
+{
+    const float32x4x2_t acc =
+    {
+        {
+            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))),
+            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))),
+        }
+    };
+    return vquantize(acc, requant_qinfo);
+}
+
+template <>
+inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
+{
+    const float32x4x2_t acc =
+    {
+        {
+            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))),
+            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))),
+        }
+    };
+    return vquantize_signed(acc, requant_qinfo);
+}
+
+} // namespace
+
+BorderSize CpuPoolingKernel::border_size() const
+{
+    return _border_size;
+}
+
+void CpuPoolingKernel::configure(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    const PadStrideInfo pad_stride_info   = pool_info.pad_stride_info;
+    const bool          is_global_pooling = pool_info.is_global_pooling;
+    const int           pool_stride_x     = pad_stride_info.stride().first;
+
+    // Get data layout
+    const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+    const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+
+    // Update pool size in case of global pooling
+    const Size2D pool_size(
+        is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width,
+        is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height);
+
+    // Validate pool info before calling scaled_dimensions
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y()));
+
+    // Check dst dimensions
+    unsigned int pooled_w;
+    unsigned int pooled_h;
+    std::tie(pooled_w, pooled_h) = scaled_dimensions(src->dimension(idx_width),
+                                                     src->dimension(idx_height),
+                                                     pool_size.x(),
+                                                     pool_size.y(),
+                                                     pad_stride_info);
+
+    // Perform validation step
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, pooled_w, pooled_h, indices, pool_size));
+
+    // Set instance variables
+    _pool_info   = pool_info;
+    _data_layout = src->data_layout();
+    _is_square   = (pool_size.x() == pool_size.y());
+
+    // Get data type
+    const DataType data_type = src->data_type();
+    const bool     is_nchw   = _data_layout == DataLayout::NCHW;
+
+    if(data_type == DataType::QASYMM8)
+    {
+        if(!is_nchw)
+        {
+            _func = &CpuPoolingKernel::poolingMxN_q8_nhwc<uint8_t>;
+        }
+        else
+        {
+            if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
+            {
+                _func = &CpuPoolingKernel::pooling2_q8_nchw<uint8_t>;
+            }
+            else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
+            {
+                _func = &CpuPoolingKernel::pooling3_q8_nchw<uint8_t>;
+            }
+            else
+            {
+                _func = &CpuPoolingKernel::poolingMxN_q8_nchw<uint8_t>;
+            }
+        }
+    }
+    else if(data_type == DataType::QASYMM8_SIGNED)
+    {
+        if(!is_nchw)
+        {
+            _func = &CpuPoolingKernel::poolingMxN_q8_nhwc<int8_t>;
+        }
+        else
+        {
+            if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
+            {
+                _func = &CpuPoolingKernel::pooling2_q8_nchw<int8_t>;
+            }
+            else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
+            {
+                _func = &CpuPoolingKernel::pooling3_q8_nchw<int8_t>;
+            }
+            else
+            {
+                _func = &CpuPoolingKernel::poolingMxN_q8_nchw<int8_t>;
+            }
+        }
+    }
+    else if(data_type == DataType::F16)
+    {
+        if(!is_nchw)
+        {
+            _func = &CpuPoolingKernel::poolingMxN_f16_nhwc;
+        }
+        else
+        {
+            if(_is_square)
+            {
+                switch(pool_size.x())
+                {
+                    case 2:
+                    {
+                        _func = &CpuPoolingKernel::pooling2_f16_nchw;
+                    }
+                    break;
+                    case 3:
+                    {
+                        _func = &CpuPoolingKernel::pooling3_f16_nchw;
+                    }
+                    break;
+                    default:
+                    {
+                        _func = &CpuPoolingKernel::poolingMxN_f16_nchw;
+                        break;
+                    }
+                }
+            }
+            else
+            {
+                _func = &CpuPoolingKernel::poolingMxN_f16_nchw;
+            }
+        }
+    }
+    else if(data_type == DataType::F32)
+    {
+        if(!is_nchw)
+        {
+            _func = &CpuPoolingKernel::poolingMxN_f32_nhwc;
+        }
+        else
+        {
+            if(_is_square)
+            {
+                switch(pool_size.x())
+                {
+                    case 2:
+                    {
+                        _func = &CpuPoolingKernel::pooling2_f32_nchw;
+                        break;
+                    }
+                    case 3:
+                    {
+                        _func = &CpuPoolingKernel::pooling3_f32_nchw;
+                        break;
+                    }
+                    case 7:
+                    {
+                        _func = &CpuPoolingKernel::pooling7_f32_nchw;
+                        break;
+                    }
+                    default:
+                    {
+                        _func = &CpuPoolingKernel::poolingMxN_f32_nchw;
+                        break;
+                    }
+                }
+            }
+            else
+            {
+                _func = &CpuPoolingKernel::poolingMxN_f32_nchw;
+            }
+        }
+    }
+
+    if(!is_nchw)
+    {
+        // Configure kernel window
+        Window      win = calculate_max_window(*dst, Steps());
+        Coordinates coord;
+        coord.set_num_dimensions(dst->num_dimensions());
+        dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
+        ICpuKernel::configure(win);
+    }
+    else
+    {
+        // Configure kernel window
+        auto win_config = validate_and_configure_window(src, dst, indices, pool_info, _num_elems_processed_per_iteration,
+                                                        _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y());
+        ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+        ICpuKernel::configure(win_config.second);
+    }
+}
+
+template <typename T>
+inline uint32_t offset_no_padding(uint32_t padded_offset, const Coordinates &id, const ITensorInfo &info, int pool_stride_x, int pool_stride_y)
+{
+    const int pad_left    = info.padding().left;
+    const int pad_right   = info.padding().right;
+    const int pad_top     = info.padding().top;
+    const int pad_bottom  = info.padding().bottom;
+    const int in_stride_y = static_cast<int>(info.strides_in_bytes().y());
+    const int in_stride_w = static_cast<int>(info.strides_in_bytes()[3]);
+    const int pad_horiz   = pad_left + pad_right;
+    const int pad_vert    = pad_top + pad_bottom;
+
+    if(info.data_layout() == DataLayout::NCHW)
+    {
+        const uint32_t offset_base = padded_offset
+                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_y                                            /* subtract padding elems per row */
+                                     - pad_top * sizeof(T)                                                                       /* top padding */
+                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() - pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
+                                     - in_stride_w * id[3];
+
+        return offset_base;
+    }
+    else
+    {
+        const uint32_t offset_base = padded_offset
+                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_x                          // subtract padding elems per row
+                                     - pad_top * sizeof(T)                                                     // top padding
+                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() * pool_stride_y // for each Z plane there are width*pad_right padding elems
+                                     - in_stride_w * id[3];
+
+        return offset_base;
+    }
+}
+
+template <typename T>
+void CpuPoolingKernel::pooling2_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    /** NEON vector types */
+    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
+    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
+    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
+    using q16_t     = typename wrapper::traits::promote_t<T>;
+    using q16x4_t   = typename wrapper::traits::neon_vector<q16_t, 4>::type;
+    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+    constexpr int pool_size       = 2;
+    int           pool_stride_x   = 0;
+    int           pool_stride_y   = 0;
+    const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const T *const src_top_ptr    = reinterpret_cast<const T *>(_src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+    const T *const src_bottom_ptr = reinterpret_cast<const T *>(_src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+
+    const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
+
+    const UniformQuantizationInfo src_qinfo            = _src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo dst_qinfo            = _dst->info()->quantization_info().uniform();
+    const bool                    have_different_qinfo = src_qinfo != dst_qinfo;
+
+    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        const auto top_data    = wrapper::vloadq(src_top_ptr + src.offset());
+        const auto bottom_data = wrapper::vloadq(src_bottom_ptr + src.offset());
+        q8x8_t     lower_res   = {};
+        q8x8_t     upper_res   = {};
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
+            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
+
+            // Add rows
+            const q16x8x2_t vrsum =
+            {
+                {
+                    wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
+                    wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
+                }
+            };
+
+            // Pair-wise add row data
+            const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
+            const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
+
+            q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
+
+            // Scale lower result
+            scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_lower, id, 0, scale_step_x,
+                                               pool_size, upper_bound_w, upper_bound_h,
+                                               pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+            lower_res = wrapper::vmovn(res_lower);
+
+            // Compute upper result for stride_x == 1
+            if(pool_stride_x == 1)
+            {
+                // Shifted row sum
+                const q16x8x2_t vrsum_shifted =
+                {
+                    {
+                        wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
+                        wrapper::vext_1(vrsum.val[1], vrsum.val[1])
+                    }
+                };
+
+                // Pair-wise add shifted row
+                q16x8_t res_upper = wrapper::vcombine(
+                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
+                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));
+
+                // Scale upper result
+                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_upper, id, 1, 2,
+                                                   pool_size, upper_bound_w, upper_bound_h,
+                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                upper_res = wrapper::vmovn(res_upper);
+            }
+        }
+        else
+        {
+            const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
+            lower_res              = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
+            if(pool_stride_x == 1)
+            {
+                const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
+                upper_res                      = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
+            }
+        }
+
+        if(have_different_qinfo)
+        {
+            const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
+            lower_res                  = wrapper::vgetlow(requantized_dst);
+            upper_res                  = wrapper::vgethigh(requantized_dst);
+        }
+
+        // Store result
+        if(pool_stride_x == 1)
+        {
+            const q8x8x2_t res = { { lower_res, upper_res } };
+            wrapper::vstore(reinterpret_cast<T *>(dst.ptr()), res);
+        }
+        else
+        {
+            wrapper::vstore(reinterpret_cast<T *>(dst.ptr()), lower_res);
+        }
+    },
+    src, dst);
+}
+
+void CpuPoolingKernel::pooling3_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    ARM_COMPUTE_UNUSED(pooling_type);
+    ARM_COMPUTE_UNUSED(exclude_padding);
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    constexpr const int pool_size       = 3;
+    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x   = 0;
+    int                 pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const unsigned char *const src_top_ptr    = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const unsigned char *const src_middle_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const unsigned char *const src_bottom_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + src.offset()));
+        float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(src_middle_ptr + src.offset()));
+        float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + src.offset()));
+        float16x4_t res         = {};
+
+        // Get power of 2 in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            top_data    = vmul_f16(top_data, top_data);
+            middle_data = vmul_f16(middle_data, middle_data);
+            bottom_data = vmul_f16(bottom_data, bottom_data);
+        }
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            // Calculate scale
+            const float       scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+            const float16x4_t scale_v = vdup_n_f16(scale);
+            // Perform pooling
+            const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
+            res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
+            res                        = vmul_f16(vpadd_f16(res, res), scale_v);
+        }
+        else
+        {
+            const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
+            res                        = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
+            res                        = vpmax_f16(res, res);
+        }
+
+        // Calculate square-root in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            res = vinv_f16(vinvsqrt_f16(res));
+        }
+
+        *(reinterpret_cast<float16_t *>(dst.ptr())) = vget_lane_f16(res, 0);
+    },
+    src, dst);
+#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+    ARM_COMPUTE_UNUSED(window_src);
+    ARM_COMPUTE_UNUSED(window);
+    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+template <typename T>
+inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
+f16_to_f32(float16x4_t src)
+{
+    float32x2_t dst = { static_cast<float>(vget_lane_f16(src, 0)), static_cast<float>(vget_lane_f16(src, 1)) };
+    return dst;
+}
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
+f16_to_f32(float32x2_t src)
+{
+    return src;
+}
+
+template <typename T>
+void CpuPoolingKernel::pooling2_nchw_maxpool_indices(const Window &window_src, const Window &window)
+{
+    Iterator  src(_src, window_src);
+    Iterator  dst(_dst, window);
+    Iterator  indices(_indices, window);
+    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
+    int       pool_stride_x = 0;
+    int       pool_stride_y = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const uint8_t *const src_top_ptr    = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const uint8_t *const src_bottom_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const int            pad_left       = _src->info()->padding().left;
+    const int            pad_right      = _src->info()->padding().right;
+    const int            in_stride_y    = static_cast<int>(_src->info()->strides_in_bytes().y());
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        auto        top_data        = wrapper::vload(reinterpret_cast<const T *>(src_top_ptr + src.offset()));
+        auto        bottom_data     = wrapper::vload(reinterpret_cast<const T *>(src_bottom_ptr + src.offset()));
+        float32x2_t top_data_f32    = f16_to_f32<T>(top_data);
+        float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
+
+        // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
+        const float32x2_t max_data_top      = vpmax_f32(top_data_f32, top_data_f32);
+        const float32x2_t max_data_bottom   = vpmax_f32(bottom_data_f32, bottom_data_f32);
+        const float32x2_t max_data          = vmax_f32(max_data_top, max_data_bottom);
+        *(reinterpret_cast<T *>(dst.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
+
+        // Calculate max data indice, which will be used in max unpool.
+        const uint32_t   offset_base              = offset_no_padding<T>(src.offset(), id, *_src->info(), pool_stride_x, pool_stride_y);
+        const uint32_t   offset_top               = (uint32_t)(offset_base / sizeof(T));
+        const uint32_t   offset_bottom            = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
+        const uint32x2_t voffset_top              = { offset_top, offset_top + 1u };
+        const uint32x2_t voffset_bottom           = { offset_bottom, offset_bottom + 1u };
+        const uint32x2_t tmp_indices_top          = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
+        const uint32x2_t tmp_indices_bottom       = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
+        *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
+    },
+    src, dst, indices);
+}
+
+void CpuPoolingKernel::pooling2_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    ARM_COMPUTE_UNUSED(pooling_type);
+    ARM_COMPUTE_UNUSED(exclude_padding);
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+    if(pooling_type == PoolingType::MAX && _indices)
+    {
+        pooling2_nchw_maxpool_indices<float16_t>(window_src, window);
+    }
+    else
+    {
+        Iterator      src(_src, window_src);
+        Iterator      dst(_dst, window);
+        constexpr int pool_size       = 2;
+        const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+        const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+        const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+        const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+        int           pool_stride_x, pool_stride_y = 0;
+        std::tie(pool_stride_x, pool_stride_y)     = _pool_info.pad_stride_info.stride();
+        const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+        const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+        const unsigned char *const src_top_ptr    = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+        const unsigned char *const src_bottom_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+        execute_window_loop(window, [&](const Coordinates & id)
+        {
+            float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + src.offset()));
+            float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + src.offset()));
+            float16x4_t res         = {};
+
+            // Get power of 2 in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                top_data    = vmul_f16(top_data, top_data);
+                bottom_data = vmul_f16(bottom_data, bottom_data);
+            }
+
+            if(pooling_type != PoolingType::MAX)
+            {
+                const float       scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                const float16x4_t scale_v = vdup_n_f16(scale);
+
+                const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
+                res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
+            }
+            else
+            {
+                const float16x4_t max_data = vmax_f16(top_data, bottom_data);
+                res                        = vpmax_f16(max_data, max_data);
+            }
+
+            // Calculate square-root in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                res = vinv_f16(vinvsqrt_f16(res));
+            }
+
+            // Store result
+            *(reinterpret_cast<float16_t *>(dst.ptr())) = vget_lane_f16(res, 0);
+        },
+        src, dst);
+    }
+#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+    ARM_COMPUTE_UNUSED(window_src);
+    ARM_COMPUTE_UNUSED(window);
+    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+}
+
+template <typename T>
+void CpuPoolingKernel::pooling3_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    /** NEON vector types */
+    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
+    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
+    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
+    using q16_t     = typename wrapper::traits::promote_t<T>;
+    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+    constexpr int pool_size       = 3;
+    const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int           pool_stride_x   = 0;
+    int           pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const UniformQuantizationInfo &src_qinfo = _src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo &dst_qinfo = _dst->info()->quantization_info().uniform();
+
+    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
+
+    const T *const src_top_ptr    = reinterpret_cast<const T *>(_src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+    const T *const src_middle_ptr = reinterpret_cast<const T *>(_src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+    const T *const src_bottom_ptr = reinterpret_cast<const T *>(_src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        const auto top_data    = wrapper::vloadq(src_top_ptr + src.offset());
+        const auto middle_data = wrapper::vloadq(src_middle_ptr + src.offset());
+        const auto bottom_data = wrapper::vloadq(src_bottom_ptr + src.offset());
+        q8x8_t     fres        = {};
+        q8x16_t    fqres       = {};
+
+        if(pooling_type == PoolingType::AVG)
+        {
+            // Convert data to u16
+            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
+            const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
+            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
+
+            // Calculate row sums
+            const q16x8x2_t vrsum =
+            {
+                {
+                    wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
+                    wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
+                }
+            };
+            const q16x8x2_t vrsum_shifted_1 =
+            {
+                {
+                    wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
+                    wrapper::vext_1(vrsum.val[1], vrsum.val[1])
+                }
+            };
+            const q16x8x2_t vrsum_shifted_2 =
+            {
+                {
+                    wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
+                    wrapper::vext_2(vrsum.val[1], vrsum.val[1])
+                }
+            };
+            // Calculate final sum
+            q16x8x2_t final_sum =
+            {
+                {
+                    wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
+                    wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
+                }
+            };
+            if(pool_stride_x == 2)
+            {
+                q16x8_t res =
+                {
+                    wrapper::vgetlane(final_sum.val[0], 0),
+                    wrapper::vgetlane(final_sum.val[0], 2),
+                    wrapper::vgetlane(final_sum.val[0], 4),
+                    wrapper::vgetlane(final_sum.val[0], 6),
+                    wrapper::vgetlane(final_sum.val[1], 0),
+                    wrapper::vgetlane(final_sum.val[1], 2),
+                    wrapper::vgetlane(final_sum.val[1], 4),
+                    wrapper::vgetlane(final_sum.val[1], 6),
+                };
+
+                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res, id, 0, 1,
+                                                   pool_size, upper_bound_w, upper_bound_h,
+                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                fres = wrapper::vmovn(res);
+            }
+            else
+            {
+                // Scale lower result
+                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[0], id, 0, 1,
+                                                   pool_size, upper_bound_w, upper_bound_h,
+                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                // Scale lower result
+                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[1], id, 8, 1,
+                                                   pool_size, upper_bound_w, upper_bound_h,
+                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
+            }
+        }
+        else
+        {
+            const q8x16_t max_data        = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
+            const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
+            const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
+            const q8x16_t final_max       = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
+
+            if(pool_stride_x == 2)
+            {
+                const q8x8x2_t      table      = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
+                static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
+                fres                           = wrapper::vtbl(table, lookup_val);
+            }
+            else
+            {
+                fqres = final_max;
+            }
+        }
+
+        // Store result
+        if(pool_stride_x == 1)
+        {
+            if(src_qinfo != dst_qinfo)
+            {
+                fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
+            }
+            wrapper::vstore(reinterpret_cast<T *>(dst.ptr()), fqres);
+        }
+        else
+        {
+            if(src_qinfo != dst_qinfo)
+            {
+                fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
+            }
+            wrapper::vstore(reinterpret_cast<T *>(dst.ptr()), fres);
+        }
+    },
+    src, dst);
+}
+
+void CpuPoolingKernel::poolingMxN_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    ARM_COMPUTE_UNUSED(pooling_type);
+    ARM_COMPUTE_UNUSED(exclude_padding);
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().x() : _pool_info.pool_size.width;
+    const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.height;
+    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x   = 0;
+    int       pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        float16_t   res  = 0.0f;
+        float16x8_t vres = vdupq_n_f16(0.0f);
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            // Calculate scale
+            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+            // Perform pooling
+
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 8); x += 8)
+                {
+                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                           (_src->info()->strides_in_bytes().y())));
+
+                    // Get power of 2 in case of l2 pooling and accumulate
+                    if(pooling_type == PoolingType::L2)
+                    {
+                        vres = vaddq_f16(vres, vmulq_f16(data, data));
+                    }
+                    else
+                    {
+                        vres = vaddq_f16(vres, data);
+                    }
+                }
+
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    float16_t data = *(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x())
+                                                                           + (y - pool_pad_top) * static_cast<int>(_src->info()->strides_in_bytes().y())));
+
+                    // Get power of 2 in case of l2 pooling
+                    if(pooling_type == PoolingType::L2)
+                    {
+                        data *= data;
+                    }
+
+                    res += data;
+                }
+            }
+
+            // Reduction
+            float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
+            res += vget_lane_f16(tmp, 0);
+            res += vget_lane_f16(tmp, 1);
+            res += vget_lane_f16(tmp, 2);
+            res += vget_lane_f16(tmp, 3);
+
+            // Divide by scale
+            res *= scale;
+        }
+        else
+        {
+            float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
+            res              = std::numeric_limits<float>::lowest();
+
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 8); x += 8)
+                {
+                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                           (_src->info()->strides_in_bytes().y())));
+                    vres                   = vmaxq_f16(vres, data);
+                }
+
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    const float16_t data = *(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x())
+                                                                                 + (y - pool_pad_top) * static_cast<int>(_src->info()->strides_in_bytes().y())));
+                    res = std::max(res, data);
+                }
+            }
+
+            float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
+            res             = std::max(res, vget_lane_f16(tmp, 0));
+            res             = std::max(res, vget_lane_f16(tmp, 1));
+            res             = std::max(res, vget_lane_f16(tmp, 2));
+            res             = std::max(res, vget_lane_f16(tmp, 3));
+        }
+
+        // Calculate square-root in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            res = std::sqrt(res);
+        }
+
+        // Store result
+        *(reinterpret_cast<float16_t *>(dst.ptr())) = res;
+    },
+    src, dst);
+
+#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+    ARM_COMPUTE_UNUSED(window_src);
+    ARM_COMPUTE_UNUSED(window);
+    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+void CpuPoolingKernel::pooling2_f16_nhwc_maxpool_indices(const Window &window_src, const Window &window)
+{
+    const int window_start_x = window.x().start();
+    const int window_end_x   = window.x().end();
+    const int window_step_x  = 8;
+
+    Window window_out = window;
+    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window_out);
+    Iterator indices(_indices, window_out);
+
+    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
+
+    int pool_stride_x = 0;
+    int pool_stride_y = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+
+    const int pad_right   = _src->info()->padding().right;
+    const int in_stride_y = static_cast<int>(_src->info()->strides_in_bytes().y());
+    const int in_stride_z = static_cast<int>(_src->info()->strides_in_bytes().z());
+
+    execute_window_loop(window_out, [&](const Coordinates & id)
+    {
+        const int idx_width    = id.y() * pool_stride_x;
+        const int idx_height   = id.z() * pool_stride_y;
+        const int pool_limit_y = pool_pad_top - idx_height;
+        const int pool_limit_x = pool_pad_left - idx_width;
+
+        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+
+        int x_off = window_start_x;
+        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+        {
+            const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(src.ptr() + in_x0_offset) + x_off;
+            const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(src.ptr() + in_x1_offset) + x_off;
+            const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(src.ptr() + in_x2_offset) + x_off;
+            const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(src.ptr() + in_x3_offset) + x_off;
+            const auto  v_x0      = vld1q_f16(in_x0_ptr);
+            const auto  v_x1      = vld1q_f16(in_x1_ptr);
+            const auto  v_x2      = vld1q_f16(in_x2_ptr);
+            const auto  v_x3      = vld1q_f16(in_x3_ptr);
+            float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
+            // Store result
+            vst1q_f16(reinterpret_cast<float16_t *>(dst.ptr()) + x_off, vres);
+
+            const uint32_t   offset_base    = offset_no_padding<float16_t>(src.offset(), id, *_src->info(), pool_stride_x, pool_stride_y);
+            const uint32_t   offset_x0      = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+            const uint32_t   offset_x1      = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
+            const uint32_t   offset_x2      = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _src->info()->tensor_shape()[1];
+            const uint32_t   offset_x3      = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
+            const uint32x4_t voffset_x0_0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
+            const uint32x4_t voffset_x0_1   = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
+            const uint16x8_t voffset_x0     = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
+            const uint32x4_t voffset_x1_0   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
+            const uint32x4_t voffset_x1_1   = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
+            const uint16x8_t voffset_x1     = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
+            const uint32x4_t voffset_x2_0   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
+            const uint32x4_t voffset_x2_1   = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
+            const uint16x8_t voffset_x2     = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
+            const uint32x4_t voffset_x3_0   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
+            const uint32x4_t voffset_x3_1   = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
+            const uint16x8_t voffset_x3     = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
+            const uint16x8_t tmp_indices0   = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
+            const uint16x8_t tmp_indices1   = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
+            const uint16x8_t tmp_indices2   = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+            const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
+            const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
+            // Store indicies
+            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
+            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
+        }
+
+        // Left-overs loop
+        for(; x_off < window_end_x; ++x_off)
+        {
+            const auto x0  = *(reinterpret_cast<const float16_t *>(src.ptr() + in_x0_offset) + x_off);
+            const auto x1  = *(reinterpret_cast<const float16_t *>(src.ptr() + in_x1_offset) + x_off);
+            const auto x2  = *(reinterpret_cast<const float16_t *>(src.ptr() + in_x2_offset) + x_off);
+            const auto x3  = *(reinterpret_cast<const float16_t *>(src.ptr() + in_x3_offset) + x_off);
+            float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));
+
+            // Store result
+            *(reinterpret_cast<float16_t *>(dst.ptr()) + x_off) = res;
+
+            const uint32_t offset_base = offset_no_padding<float16_t>(src.offset(), id, *_src->info(), pool_stride_x, pool_stride_y);
+            const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+            const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
+            const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _src->info()->tensor_shape()[1];
+            const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
+            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
+            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
+            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+            // Store indices
+            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+        }
+    },
+    src, dst, indices);
+}
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+
+void CpuPoolingKernel::poolingMxN_f16_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    ARM_COMPUTE_UNUSED(pooling_type);
+    ARM_COMPUTE_UNUSED(exclude_padding);
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+    if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
+    {
+        pooling2_f16_nhwc_maxpool_indices(window_src, window);
+    }
+    const int window_start_x = window.x().start();
+    const int window_end_x   = window.x().end();
+    const int window_step_x  = 8;
+
+    Window window_out = window;
+    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window_out);
+
+    const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.width;
+    const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().z() : _pool_info.pool_size.height;
+    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x   = 0;
+    int       pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    float16x8_t vres;
+
+    execute_window_loop(window_out, [&](const Coordinates & id)
+    {
+        const int idx_width    = id.y() * pool_stride_x;
+        const int idx_height   = id.z() * pool_stride_y;
+        const int pool_limit_y = pool_pad_top - idx_height;
+        const int pool_limit_x = pool_pad_left - idx_width;
+
+        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+        const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+        const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+        int x_off = window_start_x;
+        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+        {
+            if(pooling_type != PoolingType::MAX)
+            {
+                // Calculate scale
+                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                        pool_stride_y);
+                const float16x8_t scale_v = vdupq_n_f16(scale);
+
+                // Perform pooling
+                vres = vdupq_n_f16(0.0f);
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                               (_src->info()->strides_in_bytes().z())) + x_off);
+
+                        // Get power of 2 in case of l2 pooling and accumulate
+                        if(pooling_type == PoolingType::L2)
+                        {
+                            vres = vaddq_f16(vres, vmulq_f16(data, data));
+                        }
+                        else
+                        {
+                            vres = vaddq_f16(vres, data);
+                        }
+                    }
+                }
+                // Divide by scale
+                vres = vmulq_f16(vres, scale_v);
+            }
+            else
+            {
+                vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
+
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                               (_src->info()->strides_in_bytes().z())) + x_off);
+                        vres                   = vmaxq_f16(vres, data);
+                    }
+                }
+            }
+
+            // Calculate square-root in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
+                vres                        = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
+            }
+
+            // Store result
+            vst1q_f16(reinterpret_cast<float16_t *>(dst.ptr()) + x_off, vres);
+        }
+
+        // Left-overs loop
+        for(; x_off < window_end_x; ++x_off)
+        {
+            float16_t res = 0.0f;
+
+            if(pooling_type != PoolingType::MAX)
+            {
+                // Calculate scale
+                const float16_t scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                            pool_stride_y);
+
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const float data = *(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                 (_src->info()->strides_in_bytes().z())) + x_off);
+
+                        // Get power of 2 in case of l2 pooling and accumulate
+                        if(pooling_type == PoolingType::L2)
+                        {
+                            res += data * data;
+                        }
+                        else
+                        {
+                            res += data;
+                        }
+                    }
+                }
+
+                // Divide by scale
+                res *= scale;
+            }
+            else
+            {
+                res = std::numeric_limits<float>::lowest();
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const float16_t data = *(reinterpret_cast<const float16_t *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                     (_src->info()->strides_in_bytes().z())) + x_off);
+                        res                  = std::max(res, data);
+                    }
+                }
+            }
+
+            // Calculate square-root in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                res = std::sqrt(res);
+            }
+
+            // Store result
+            *(reinterpret_cast<float16_t *>(dst.ptr()) + x_off) = res;
+        }
+    },
+    src, dst);
+
+#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+    ARM_COMPUTE_UNUSED(window_src);
+    ARM_COMPUTE_UNUSED(window);
+    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+}
+
+void CpuPoolingKernel::poolingMxN_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().x() : _pool_info.pool_size.width;
+    const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.height;
+    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x   = 0;
+    int       pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        float res = 0.0f;
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            // Calculate scale
+            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+            // Perform pooling
+            float32x4_t vres = vdupq_n_f32(0.0f);
+
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 4); x += 4)
+                {
+                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                       (_src->info()->strides_in_bytes().y())));
+
+                    // Get power of 2 in case of l2 pooling and accumulate
+                    if(pooling_type == PoolingType::L2)
+                    {
+                        vres = vmlaq_f32(vres, data, data);
+                    }
+                    else
+                    {
+                        vres = vaddq_f32(vres, data);
+                    }
+                }
+
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    float data = *(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                   (_src->info()->strides_in_bytes().y())));
+
+                    // Get power of 2 in case of l2 pooling
+                    if(pooling_type == PoolingType::L2)
+                    {
+                        data *= data;
+                    }
+
+                    res += data;
+                }
+            }
+
+#if defined(__aarch64__)
+            // Reduction operation available on 64 bit architectures only
+            res += vaddvq_f32(vres);
+#else  // __aarch64__
+            // Reduction
+            float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
+            tmp             = vpadd_f32(tmp, tmp);
+
+            res += vget_lane_f32(tmp, 0);
+#endif // __aarch64__
+            // Divide by scale
+            res *= scale;
+        }
+        else
+        {
+            float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
+            res              = std::numeric_limits<float>::lowest();
+
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 4); x += 4)
+                {
+                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                       (_src->info()->strides_in_bytes().y())));
+                    vres                   = vmaxq_f32(vres, data);
+                }
+
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    const float data = *(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                         (_src->info()->strides_in_bytes().y())));
+                    res              = std::max(res, data);
+                }
+            }
+#if defined(__aarch64__)
+            // Reduction operation available on 64 bit architectures only
+            res = std::max(vmaxvq_f32(vres), res);
+#else  // __aarch64__
+            float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
+            tmp             = vpmax_f32(tmp, tmp);
+
+            res = std::max(res, vget_lane_f32(tmp, 0));
+#endif // __aarch64__
+        }
+
+        // Calculate square-root in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            res = std::sqrt(res);
+        }
+
+        // Store result
+        *(reinterpret_cast<float *>(dst.ptr())) = res;
+    },
+    src, dst);
+}
+
+void CpuPoolingKernel::pooling2_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type,
+                                         bool exclude_padding)
+{
+    if(pooling_type == PoolingType::MAX && _indices)
+    {
+        pooling2_nchw_maxpool_indices<float>(window_src, window);
+    }
+    else
+    {
+        Iterator      src(_src, window_src);
+        Iterator      dst(_dst, window);
+        constexpr int pool_size       = 2;
+        const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+        const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+        const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+        const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+        int           pool_stride_x   = 0;
+        int           pool_stride_y   = 0;
+        std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+        const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+        const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+        const uint8_t *const src_top_ptr    = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+        const uint8_t *const src_bottom_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+        execute_window_loop(window, [&](const Coordinates & id)
+        {
+            const auto  in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + src.offset());
+            const auto  in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + src.offset());
+            float32x2_t top_data      = vld1_f32(in_top_ptr);
+            float32x2_t bottom_data   = vld1_f32(in_bottom_ptr);
+            float32x2_t res           = {};
+            float       final_res     = 0;
+            // Get power of 2 in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                top_data    = vmul_f32(top_data, top_data);
+                bottom_data = vmul_f32(bottom_data, bottom_data);
+            }
+
+            if(pooling_type != PoolingType::MAX)
+            {
+                // Calculate scale
+                float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                const float32x2_t scale_v = vdup_n_f32(scale);
+
+                // Perform pooling
+                const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
+                res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+            }
+            else
+            {
+                const float32x2_t max_data = vmax_f32(top_data, bottom_data);
+                res                        = vpmax_f32(max_data, max_data);
+            }
+            final_res = vget_lane_f32(res, 0);
+
+            // Calculate square-root in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                final_res = sqrt(final_res);
+            }
+
+            // Store result
+            *(reinterpret_cast<float *>(dst.ptr())) = final_res;
+        },
+        src, dst);
+    }
+}
+
+void CpuPoolingKernel::pooling3_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    constexpr const int pool_size       = 3;
+    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x   = 0;
+    int                 pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const uint8_t *const src_top_ptr    = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const uint8_t *const src_middle_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const uint8_t *const src_bottom_ptr = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        float32x4_t top_data    = vld1q_f32(reinterpret_cast<const float *>(src_top_ptr + src.offset()));
+        float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(src_middle_ptr + src.offset()));
+        float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(src_bottom_ptr + src.offset()));
+        float32x2_t res         = {};
+        float       final_res   = 0;
+
+        // Get power of 2 in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            top_data    = vmulq_f32(top_data, top_data);
+            middle_data = vmulq_f32(middle_data, middle_data);
+            bottom_data = vmulq_f32(bottom_data, bottom_data);
+        }
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            // Calculate scale
+            float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+            const float32x2_t scale_v = vdup_n_f32(scale);
+
+            // Perform pooling
+            const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
+            res                        = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
+            res                        = vmul_f32(vpadd_f32(res, res), scale_v);
+        }
+        else
+        {
+            const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
+            res                        = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
+            res                        = vpmax_f32(res, res);
+        }
+        final_res = vget_lane_f32(res, 0);
+
+        // Calculate square-root in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            final_res = sqrt(final_res);
+        }
+
+        // Store result
+        *(reinterpret_cast<float *>(dst.ptr())) = final_res;
+    },
+    src, dst);
+}
+
+void CpuPoolingKernel::pooling7_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    constexpr const int pool_size       = 7;
+    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x   = 0;
+    int                 pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    std::array<const uint8_t *, pool_size> src_ptrs{ {} };
+    for(int i = 0; i < pool_size; ++i)
+    {
+        src_ptrs[i] = _src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
+    }
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        float32x2_t res       = {};
+        float       final_res = 0.f;
+        if(pooling_type != PoolingType::MAX)
+        {
+            // Calculate scale
+            float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+            const float32x2_t scale_v = vdup_n_f32(scale);
+
+            // Perform pooling
+            float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + src.offset()));
+            // Get power of 2 in case of l2 pooling
+            if(pooling_type == PoolingType::L2)
+            {
+                data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+                data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+            }
+            float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
+            for(int i = 1; i < pool_size; ++i)
+            {
+                data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + src.offset()));
+                // Get power of 2 in case of l2 pooling
+                if(pooling_type == PoolingType::L2)
+                {
+                    data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+                    data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+                }
+                sum_data = vaddq_f32(sum_data, data.val[0]);
+                sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+            }
+            res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
+            res = vmul_f32(vpadd_f32(res, res), scale_v);
+        }
+        else
+        {
+            float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + src.offset()));
+            for(int i = 1; i < pool_size; ++i)
+            {
+                const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + src.offset()));
+                max_data                 = vmax2q_f32(max_data, data);
+            }
+            res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
+            res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
+            res = vpmax_f32(res, res);
+        }
+        final_res = vget_lane_f32(res, 0);
+
+        // Calculate square-root in case of l2 pooling
+        if(pooling_type == PoolingType::L2)
+        {
+            final_res = sqrt(final_res);
+        }
+
+        // Store result
+        *(reinterpret_cast<float *>(dst.ptr())) = final_res;
+    },
+    src, dst);
+}
+
+void CpuPoolingKernel::poolingMxN_f32_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
+    {
+        pooling2_f32_nhwc_maxpool_indices(window_src, window);
+    }
+    else
+    {
+        const int window_start_x = window.x().start();
+        const int window_end_x   = window.x().end();
+        const int window_step_x  = 4;
+
+        Window window_out = window;
+        window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+        Iterator src(_src, window_src);
+        Iterator dst(_dst, window_out);
+
+        const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.width;
+        const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().z() : _pool_info.pool_size.height;
+        const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+        const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+        const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+        const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+        int       pool_stride_x   = 0;
+        int       pool_stride_y   = 0;
+        std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+        const int upper_bound_w = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
+        const int upper_bound_h = _src->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
+
+        float32x4_t vres;
+
+        execute_window_loop(window_out, [&](const Coordinates & id)
+        {
+            const int idx_width    = id.y() * pool_stride_x;
+            const int idx_height   = id.z() * pool_stride_y;
+            const int pool_limit_y = pool_pad_top - idx_height;
+            const int pool_limit_x = pool_pad_left - idx_width;
+
+            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+            const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+            const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+            int x_off = window_start_x;
+            for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+            {
+                if(pooling_type != PoolingType::MAX)
+                {
+                    // Calculate scale
+                    const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                            pool_stride_y);
+                    const float32x4_t scale_v = vdupq_n_f32(scale);
+
+                    // Perform pooling
+                    vres = vdupq_n_f32(0.0f);
+
+                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                               (_src->info()->strides_in_bytes().z())) + x_off);
+
+                            // Get power of 2 in case of l2 pooling and accumulate
+                            if(pooling_type == PoolingType::L2)
+                            {
+                                vres = vmlaq_f32(vres, data, data);
+                            }
+                            else
+                            {
+                                vres = vaddq_f32(vres, data);
+                            }
+                        }
+                    }
+                    // Divide by scale
+                    vres = vmulq_f32(vres, scale_v);
+                }
+                else
+                {
+                    vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
+                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                               (_src->info()->strides_in_bytes().z())) + x_off);
+                            vres                   = vmaxq_f32(vres, data);
+                        }
+                    }
+                }
+
+                // Calculate square-root in case of l2 pooling
+                if(pooling_type == PoolingType::L2)
+                {
+                    float32x4_t l2_res = { static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
+                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
+                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
+                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))
+                                         };
+                    vres = l2_res;
+                }
+
+                // Store result
+                vst1q_f32(reinterpret_cast<float *>(dst.ptr()) + x_off, vres);
+            }
+
+            // Left-overs loop
+            for(; x_off < window_end_x; ++x_off)
+            {
+                float res = 0.0f;
+
+                if(pooling_type != PoolingType::MAX)
+                {
+                    // Calculate scale
+                    const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                            pool_stride_y);
+
+                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float data = *(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                 (_src->info()->strides_in_bytes().z())) + x_off);
+
+                            // Get power of 2 in case of l2 pooling and accumulate
+                            if(pooling_type == PoolingType::L2)
+                            {
+                                res += data * data;
+                            }
+                            else
+                            {
+                                res += data;
+                            }
+                        }
+                    }
+
+                    // Divide by scale
+                    res *= scale;
+                }
+                else
+                {
+                    res = std::numeric_limits<float>::lowest();
+                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float data = *(reinterpret_cast<const float *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                 (_src->info()->strides_in_bytes().z())) + x_off);
+                            res              = std::max(res, data);
+                        }
+                    }
+                }
+
+                // Calculate square-root in case of l2 pooling
+                if(pooling_type == PoolingType::L2)
+                {
+                    res = std::sqrt(res);
+                }
+
+                // Store result
+                *(reinterpret_cast<float *>(dst.ptr()) + x_off) = res;
+            }
+        },
+        src, dst);
+    }
+}
+
+void CpuPoolingKernel::pooling2_f32_nhwc_maxpool_indices(const Window &window_src, const Window &window)
+{
+    const int window_start_x = window.x().start();
+    const int window_end_x   = window.x().end();
+    const int window_step_x  = 4;
+
+    Window window_out = window;
+    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window_out);
+    Iterator indices(_indices, window_out);
+
+    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
+
+    int pool_stride_x = 0;
+    int pool_stride_y = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+
+    float32x4_t vres;
+    float       res;
+
+    const int pad_right   = _src->info()->padding().right;
+    const int in_stride_y = static_cast<int>(_src->info()->strides_in_bytes().y());
+    const int in_stride_z = static_cast<int>(_src->info()->strides_in_bytes().z());
+
+    execute_window_loop(window_out, [&](const Coordinates & id)
+    {
+        const int idx_width    = id.y() * pool_stride_x;
+        const int idx_height   = id.z() * pool_stride_y;
+        const int pool_limit_y = pool_pad_top - idx_height;
+        const int pool_limit_x = pool_pad_left - idx_width;
+
+        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+
+        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
+                                 (_src->info()->strides_in_bytes().z());
+
+        int x_off = window_start_x;
+        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+        {
+            const auto in_x0_ptr = reinterpret_cast<const float *>(src.ptr() + in_x0_offset);
+            const auto in_x1_ptr = reinterpret_cast<const float *>(src.ptr() + in_x1_offset);
+            const auto in_x2_ptr = reinterpret_cast<const float *>(src.ptr() + in_x2_offset);
+            const auto in_x3_ptr = reinterpret_cast<const float *>(src.ptr() + in_x3_offset);
+            const auto v_x0      = vld1q_f32(in_x0_ptr + x_off);
+            const auto v_x1      = vld1q_f32(in_x1_ptr + x_off);
+            const auto v_x2      = vld1q_f32(in_x2_ptr + x_off);
+            const auto v_x3      = vld1q_f32(in_x3_ptr + x_off);
+            vres                 = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
+            // Store result
+            vst1q_f32(reinterpret_cast<float *>(dst.ptr()) + x_off, vres);
+
+            const uint32_t   offset_base  = offset_no_padding<float>(src.offset(), id, *_src->info(), pool_stride_x, pool_stride_y);
+            const uint32_t   offset_x0    = (uint32_t)offset_base / sizeof(float) + x_off;
+            const uint32_t   offset_x1    = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
+            const uint32_t   offset_x2    = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _src->info()->tensor_shape()[1];
+            const uint32_t   offset_x3    = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
+            const uint32x4_t voffset_x0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
+            const uint32x4_t voffset_x1   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
+            const uint32x4_t voffset_x2   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
+            const uint32x4_t voffset_x3   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
+            const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
+            const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
+            const uint32x4_t tmp_indices2 = vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+
+            // Store indices
+            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
+        }
+
+        // Left-overs loop
+        for(; x_off < window_end_x; ++x_off)
+        {
+            const auto x0 = *(reinterpret_cast<const float *>(src.ptr() + in_x0_offset) + x_off);
+            const auto x1 = *(reinterpret_cast<const float *>(src.ptr() + in_x1_offset) + x_off);
+            const auto x2 = *(reinterpret_cast<const float *>(src.ptr() + in_x2_offset) + x_off);
+            const auto x3 = *(reinterpret_cast<const float *>(src.ptr() + in_x3_offset) + x_off);
+            res           = std::max(std::max(x2, x3), std::max(x0, x1));
+
+            // Store result
+            *(reinterpret_cast<float *>(dst.ptr()) + x_off) = res;
+
+            const uint32_t offset_base = offset_no_padding<float>(src.offset(), id, *_src->info(), pool_stride_x, pool_stride_y);
+            const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float) + x_off;
+            const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
+            const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _src->info()->tensor_shape()[1];
+            const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
+            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
+            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
+            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+            // Store indices
+            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+        }
+    },
+    src, dst, indices);
+}
+
+template <typename T>
+void CpuPoolingKernel::poolingMxN_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window);
+
+    /** NEON vector types */
+    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
+    using q16_t   = typename wrapper::traits::promote_t<T>;
+    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
+    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
+
+    const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().x() : _pool_info.pool_size.width;
+    const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.height;
+    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x   = 0;
+    int       pool_stride_y   = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const UniformQuantizationInfo &src_qinfo = _src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo &dst_qinfo = _dst->info()->quantization_info().uniform();
+
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        T res = std::numeric_limits<T>::min();
+
+        if(pooling_type != PoolingType::MAX)
+        {
+            q32x4_t vres = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+            q32_t   sres = 0;
+
+            // Calculate scale
+            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+            // Perform pooling
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 8); x += 8)
+                {
+                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                   (_src->info()->strides_in_bytes().y())));
+
+                    const q16x8_t data_q16 = wrapper::vmovl(data);
+                    vres                   = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16)));
+                }
+
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    T data = *(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                           (_src->info()->strides_in_bytes().y())));
+                    sres += data;
+                }
+            }
+
+            // Reduction
+            const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres));
+            sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1);
+
+            // Divide by scale
+            res = static_cast<T>(support::cpp11::round(sres * scale));
+        }
+        else
+        {
+            q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
+
+            for(int y = 0; y < pool_size_y; ++y)
+            {
+                int x = 0;
+                for(; x <= (pool_size_x - 8); x += 8)
+                {
+                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                                   (_src->info()->strides_in_bytes().y())));
+                    vres              = wrapper::vmax(vres, data);
+                }
+                // Leftover for loop
+                for(; x < pool_size_x; ++x)
+                {
+                    const T data = *(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
+                                                                 (_src->info()->strides_in_bytes().y())));
+                    res          = std::max(res, data);
+                }
+            }
+
+            // Reduce max
+            vres = wrapper::vpmax(vres, vres);
+            vres = wrapper::vpmax(vres, vres);
+            vres = wrapper::vpmax(vres, vres);
+
+            // Get max value
+            res = std::max(res, wrapper::vgetlane(vres, 0));
+        }
+        // Store result
+        res                                 = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo) : res;
+        *(reinterpret_cast<T *>(dst.ptr())) = res;
+    },
+    src, dst);
+}
+
+template <typename T>
+void CpuPoolingKernel::poolingMxN_q8_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding)
+{
+    const int window_start_x     = window.x().start();
+    const int window_end_x       = window.x().end();
+    const int window_step_x      = 16;
+    const int window_half_step_x = window_step_x / 2;
+
+    Window window_out = window;
+    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator src(_src, window_src);
+    Iterator dst(_dst, window_out);
+
+    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
+    using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+    using q16_t   = typename wrapper::traits::promote_t<T>;
+    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
+    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
+
+    const int pool_size_x     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().y() : _pool_info.pool_size.width;
+    const int pool_size_y     = _pool_info.is_global_pooling ? _src->info()->tensor_shape().z() : _pool_info.pool_size.height;
+    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
+
+    int pool_stride_x = 0;
+    int pool_stride_y = 0;
+    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+    const int upper_bound_w = _src->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
+    const int upper_bound_h = _src->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
+
+    const float32x4_t             half_scale_v = vdupq_n_f32(0.5f);
+    const UniformQuantizationInfo src_qinfo    = _src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo dst_qinfo    = _dst->info()->quantization_info().uniform();
+
+    const float quant_rescale = dst_qinfo.scale / src_qinfo.scale;
+    // "new_offset" doesn't have to consider the "half_scale_v" in its computation
+    // With a requantization performed in a single step there won't be uncertainties introduced
+    const int32_t new_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);
+
+    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
+
+    execute_window_loop(window_out, [&](const Coordinates & id)
+    {
+        const int idx_width    = id.y() * pool_stride_x;
+        const int idx_height   = id.z() * pool_stride_y;
+        const int pool_limit_y = pool_pad_top - idx_height;
+        const int pool_limit_x = pool_pad_left - idx_width;
+
+        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+        const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+        const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+        int x_off = window_start_x;
+        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+        {
+            if(pooling_type != PoolingType::MAX)
+            {
+                q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+
+                // Calculate scale
+                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                        pool_stride_y);
+
+                // Perform pooling
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                         (_src->info()->strides_in_bytes().z())) + x_off);
+
+                        const q16x8_t data_q16  = wrapper::vmovl(wrapper::vgetlow(data));
+                        const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
+                        vres1                   = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
+                        vres2                   = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
+                        vres3                   = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
+                        vres4                   = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
+                    }
+                }
+
+                if(src_qinfo != dst_qinfo)
+                {
+                    const float32x4x4_t vres =
+                    {
+                        {
+                            vcvtq_f32_q32(vres1),
+                            vcvtq_f32_q32(vres2),
+                            vcvtq_f32_q32(vres3),
+                            vcvtq_f32_q32(vres4),
+                        }
+                    };
+                    const auto requantized_dst = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
+                    // Store result
+                    wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
+                    wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off + 8, wrapper::vgethigh(requantized_dst));
+                }
+                else
+                {
+                    const float32x4_t scale_v = vdupq_n_f32(scale);
+                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+                    vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
+                    vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
+                    vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
+                    vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
+
+                    const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
+                    const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
+                    // Store result
+                    wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off, res1);
+                    wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off + 8, res2);
+                }
+            }
+            else
+            {
+                q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
+
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                         (_src->info()->strides_in_bytes().z())) + x_off);
+                        vres               = wrapper::vmax(vres, data);
+                    }
+                }
+
+                // Store result
+                wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
+                                requant_qinfo) :
+                                vres);
+            }
+        }
+
+        if(pooling_type == PoolingType::MAX)
+        {
+            for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
+            {
+                q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                                       (_src->info()->strides_in_bytes().z())) + x_off);
+                        vres              = wrapper::vmax(vres, data);
+                    }
+                }
+
+                // Store result
+                wrapper::vstore(reinterpret_cast<T *>(dst.ptr()) + x_off,
+                                (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
+            }
+        }
+
+        // Left-overs loop
+        for(; x_off < window_end_x; ++x_off)
+        {
+            if(pooling_type != PoolingType::MAX)
+            {
+                q32_t res = static_cast<q32_t>(0.f);
+
+                // Calculate scale
+                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
+                                                        pool_stride_y);
+
+                // Perform pooling
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const T data = *(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                     (_src->info()->strides_in_bytes().z())) + x_off);
+                        res += data;
+                    }
+                }
+
+                if(src_qinfo != dst_qinfo)
+                {
+                    const float res_f           = static_cast<float>(res);
+                    const float new_scale       = quant_rescale / scale;
+                    const auto  requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
+
+                    // Store result
+                    *(reinterpret_cast<T *>(dst.ptr()) + x_off) = requantized_dst;
+                }
+                else
+                {
+                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+                    res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
+
+                    // Store result
+                    *(reinterpret_cast<T *>(dst.ptr()) + x_off) = res;
+                }
+            }
+            else
+            {
+                T res = std::numeric_limits<T>::min();
+
+                for(int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const T data = *(reinterpret_cast<const T *>(src.ptr() + (x - pool_pad_left) * static_cast<int>(_src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
+                                                                     (_src->info()->strides_in_bytes().z())) + x_off);
+                        res          = std::max(res, data);
+                    }
+                }
+
+                // Store result
+                if(src_qinfo != dst_qinfo)
+                {
+                    const float res_f                           = static_cast<float>(res);
+                    *(reinterpret_cast<T *>(dst.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
+                }
+                else
+                {
+                    *(reinterpret_cast<T *>(dst.ptr()) + x_off) = res;
+                }
+            }
+        }
+
+    },
+    src, dst);
+}
+
+Status CpuPoolingKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src);
+
+    unsigned int pooled_w                          = 0;
+    unsigned int pooled_h                          = 0;
+    unsigned int num_elems_processed_per_iteration = 0;
+    BorderSize   border_size(0);
+
+    const bool   is_global_pooling = pool_info.is_global_pooling;
+    unsigned int pool_size_x       = 0;
+    unsigned int pool_size_y       = 0;
+
+    // Get data layout
+    const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+    const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+
+    pool_size_x = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
+    pool_size_y = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
+
+    // Validate pool info before calling scaled_dimensions
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y));
+
+    // Check dst dimensions
+    std::tie(pooled_w, pooled_h) = scaled_dimensions(src->dimension(idx_width),
+                                                     src->dimension(idx_height),
+                                                     pool_size_x,
+                                                     pool_size_y,
+                                                     pool_info.pad_stride_info);
+
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, pooled_w, pooled_h, indices, Size2D(pool_size_x, pool_size_y)));
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), dst->clone().get(),
+                                                              (indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h,
+                                                              pool_size_x, pool_size_y)
+                                .first);
+
+    return Status{};
+}
+
+void CpuPoolingKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+    ARM_COMPUTE_ERROR_ON(_func == nullptr);
+
+    _src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    _dst     = tensors.get_tensor(TensorType::ACL_DST_0);
+    _indices = tensors.get_tensor(TensorType::ACL_DST_1);
+
+    const unsigned int pool_stride_x   = _pool_info.pad_stride_info.stride().first;
+    const unsigned int pool_stride_y   = _pool_info.pad_stride_info.stride().second;
+    const unsigned int pool_size       = _pool_info.pool_size.width;
+    const bool         exclude_padding = _pool_info.exclude_padding;
+
+    Window window_src(window);
+    if(_data_layout == DataLayout::NCHW)
+    {
+        // Set step for src in x and y direction for the src
+        unsigned int window_x_inc = 0;
+        switch(_src->info()->data_type())
+        {
+            case DataType::QASYMM8:
+            case DataType::QASYMM8_SIGNED:
+            {
+                window_x_inc = pool_stride_x;
+                if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
+                {
+                    window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
+                }
+                break;
+            }
+
+            case DataType::F16:
+            case DataType::F32:
+            {
+                window_x_inc = pool_stride_x;
+                break;
+            }
+            default:
+            {
+                ARM_COMPUTE_ERROR("Not supported");
+            }
+        }
+        window_src.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
+        window_src.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
+    }
+    else
+    {
+        window_src.set(Window::DimX, Window::Dimension(0, 1, 1));
+        window_src.set(Window::DimY, Window::Dimension(0, _src->info()->dimension(1), pool_stride_x));
+        window_src.set(Window::DimZ, Window::Dimension(0, _src->info()->dimension(2), pool_stride_y));
+    }
+
+    // Run function
+    (this->*_func)(window_src, window, _pool_info.pool_type, exclude_padding);
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuPoolingKernel.h b/src/core/cpu/kernels/CpuPoolingKernel.h
new file mode 100644
index 0000000..036e436
--- /dev/null
+++ b/src/core/cpu/kernels/CpuPoolingKernel.h
@@ -0,0 +1,226 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_POOLING_KERNEL_H
+#define ARM_COMPUTE_CPU_POOLING_KERNEL_H
+
+#include "arm_compute/core/Types.h"
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Interface for the pooling layer kernel */
+class CpuPoolingKernel : public ICpuKernel
+{
+public:
+    const char *name() const override
+    {
+        return "CpuPoolingKernel";
+    }
+    /** Default constructor */
+    CpuPoolingKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuPoolingKernel);
+    /** Configure kernel for a given list of arguments
+     *
+     * @note F16 are supported for pool sizes 2 and 3 only
+     *
+     * @param[in]  src       Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[out] dst       Destination tensor info. Data types supported: Same as @p src.
+     * @param[in]  pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
+     * @param[out] indices   (optional) The indices of the maximal values. Data type supported: U32.
+     */
+    void configure(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr);
+    /** Static function to check if given info will lead to a valid configuration of @ref CpuPoolingKernel
+     *
+     * @note F16 are supported for pool sizes 2 and 3 only
+     *
+     * @param[in] src       Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+     * @param[in] dst       Destination tensor info. Data types supported: Same as @p src.
+     * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
+     * @param[in] indices   (optional) The indices of the maximal values. Data type supported: U32.
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    BorderSize border_size() const override;
+
+private:
+    /** Function to perform 2x2 pooling.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void pooling2_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
+     *
+     * @param[in] window_src src region on which to execute the kernel.
+     * @param[in] window     dst region on which to execute the kernel.
+     */
+    void pooling2_f32_nhwc_maxpool_indices(const Window &window_src, const Window &window);
+    /** Function to perform MxN pooling for 32-bit floating point values.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void poolingMxN_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform MxN pooling for 32-bit floating point values (NHWC).
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void poolingMxN_f32_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform 7x7 pooling.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void pooling7_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform 3x3 pooling.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void pooling3_f32_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform 2x2 pooling for float16_t.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void pooling2_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform 2x2 pooling and compute the pooling indices for FP32/FP16. The indices can be used for max unpool.
+     *
+     * @param[in] window_src src region on which to execute the kernel.
+     * @param[in] window     dst region on which to execute the kernel.
+     */
+    template <typename T>
+    void pooling2_nchw_maxpool_indices(const Window &window_src, const Window &window);
+    /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
+     *
+     * @param[in] window_src src region on which to execute the kernel.
+     * @param[in] window     dst region on which to execute the kernel.
+     */
+    void pooling2_f16_nhwc_maxpool_indices(const Window &window_src, const Window &window);
+    /** Function to perform 3x3 pooling.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void pooling3_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform MxN pooling for 16-bit floating point values.
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void poolingMxN_f16_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Function to perform MxN pooling for 16-bit floating point values. (NHWC)
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    void poolingMxN_f16_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Template function to perform 2x2 pooling for 8bit quantized fixed point. (NCHW)
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    template <typename T>
+    void pooling2_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Template function to perform 3x3 pooling for 8bit quantized fixed point. (NCHW)
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    template <typename T>
+    void pooling3_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Template function to perform MxN pooling for 8-bit quantized. (NCHW)
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    template <typename T>
+    void poolingMxN_q8_nchw(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Template function to perform MxN pooling for 8-bit quantized. (NHWC)
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    template <typename T>
+    void poolingMxN_q8_nhwc(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
+    /** Common signature for all the specialised Pooling functions
+     *
+     * @param[in] window_src      src region on which to execute the kernel.
+     * @param[in] window          dst region on which to execute the kernel.
+     * @param[in] pooling_type    Pooling operation to be computed.
+     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
+     */
+    using PoolingFunction = void (CpuPoolingKernel::*)(const Window &window_src, const Window &window, PoolingType pooling_type, bool exclude_padding);
+
+private:
+    PoolingFunction  _func{ nullptr };
+    const ITensor   *_src{ nullptr };
+    ITensor         *_dst{ nullptr };
+    ITensor         *_indices{ nullptr };
+    PoolingLayerInfo _pool_info{};
+    DataLayout       _data_layout{ DataLayout::UNKNOWN };
+    unsigned int     _num_elems_processed_per_iteration{ 0 };
+    BorderSize       _border_size{ 0 };
+    bool             _is_square{ false };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /*ARM_COMPUTE_CPU_POOLING_KERNEL_H */