blob: 7629b255b73a482ab886d7ab4f720cbe5af20ee2 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers_cs.h"
#if defined(DATA_TYPE_FP16)
precision mediump float;
#endif /*DATA_TYPE_FP32*/
#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) inversesqrt((a))
#define SQCVT_SAT(a) (a)
#if defined(LU_BRELU)
#define ACTIVATION_FUNC(x) min(max(x, float(B_VAL)), float(A_VAL))
#elif defined(BRELU)
#define ACTIVATION_FUNC(x) min(max(x, float(0)), float(A_VAL))
#elif defined(RELU)
#define ACTIVATION_FUNC(x) max(x, float(0))
#else /* defined(FUSED_ACT) */
#define ACTIVATION_FUNC(x) (x)
#endif /* defined(FUSED_ACT) */
/** Apply batch normalization.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
* @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1"
*
* @param[in] src_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p src_ptr
* @param[in] mean_attrs The attributes of the mean tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p src_ptr
* @param[in] var_attrs The attributes of the var tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p src_ptr
* @param[in] beta_attrs The attributes of the beta tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p src_ptr
* @param[in] gamma_attrs The attributes of the gamma tensor
*/
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
Tensor3DAttributes dst_attrs;
VectorAttributes mean_attrs;
VectorAttributes var_attrs;
VectorAttributes beta_attrs;
VectorAttributes gamma_attrs;
};
#ifdef DATA_TYPE_FP32
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
TENSOR_DECLARATION(3, meanBuffer, float, mean_ptr, mean_shift, 2, readonly);
TENSOR_DECLARATION(4, varBuffer, float, var_ptr, var_shift, 2, readonly);
TENSOR_DECLARATION(5, betaBuffer, float, beta_ptr, beta_shift, 2, readonly);
TENSOR_DECLARATION(6, gammaBuffer, float, gamma_ptr, gamma_shift, 2, readonly);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
VectorIterator mean_iter = CONVERT_TO_VECTOR_ITERATOR(mean_attrs, mean_shift);
VectorIterator var_iter = CONVERT_TO_VECTOR_ITERATOR(var_attrs, var_shift);
VectorIterator beta_iter = CONVERT_TO_VECTOR_ITERATOR(beta_attrs, beta_shift);
VectorIterator gamma_iter = CONVERT_TO_VECTOR_ITERATOR(gamma_attrs, gamma_shift);
float input_value = 0.f;
float denominator = 0.f;
float numerator = 0.f;
float x_bar = 0.f;
float gamma_param = 0.f;
float beta_param = 0.f;
uint current_slice = gl_GlobalInvocationID.z;
input_value = LOAD_CURRENT_ITEM(src_ptr, src_iter);
denominator = LOAD(var_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(var_iter, current_slice * var_attrs.stride_x));
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
// Calculate x bar and store results
numerator = LOAD(mean_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(mean_iter, current_slice * mean_attrs.stride_x));
numerator = SUB_OP(input_value, numerator);
x_bar = MUL_OP(numerator, denominator);
gamma_param = LOAD(gamma_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(gamma_iter, current_slice * beta_attrs.stride_x));
beta_param = LOAD(beta_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(beta_iter, current_slice * beta_attrs.stride_x));
STORE_CURRENT_ITEM(dst_ptr, dst_iter, ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param)));
}
#elif defined(DATA_TYPE_FP16)
TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
TENSOR_DECLARATION(3, meanBuffer, uvec2, mean_ptr, mean_shift, 3, readonly);
TENSOR_DECLARATION(4, varBuffer, uvec2, var_ptr, var_shift, 3, readonly);
TENSOR_DECLARATION(5, betaBuffer, uvec2, beta_ptr, beta_shift, 3, readonly);
TENSOR_DECLARATION(6, gammaBuffer, uvec2, gamma_ptr, gamma_shift, 3, readonly);
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
VectorIterator mean_iter = CONVERT_TO_VECTOR_ITERATOR(mean_attrs, mean_shift);
VectorIterator var_iter = CONVERT_TO_VECTOR_ITERATOR(var_attrs, var_shift);
VectorIterator beta_iter = CONVERT_TO_VECTOR_ITERATOR(beta_attrs, beta_shift);
VectorIterator gamma_iter = CONVERT_TO_VECTOR_ITERATOR(gamma_attrs, gamma_shift);
vec4 unpacked_s[5];
float denominator;
float numerator;
float gamma_param;
float beta_param;
vec4 x_bar;
vec4 result;
uint current_slice = gl_GlobalInvocationID.z;
unpacked_s[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter);
unpacked_s[1] = LOAD_UNPACK4_HALF(var_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(var_iter, current_slice * var_attrs.stride_x));
unpacked_s[2] = LOAD_UNPACK4_HALF(mean_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(mean_iter, current_slice * mean_attrs.stride_x));
unpacked_s[3] = LOAD_UNPACK4_HALF(gamma_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(gamma_iter, current_slice * beta_attrs.stride_x));
unpacked_s[4] = LOAD_UNPACK4_HALF(beta_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(beta_iter, current_slice * beta_attrs.stride_x));
if((current_slice % uint(4)) == uint(0))
{
denominator = unpacked_s[1].x;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].x;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].x;
beta_param = unpacked_s[4].x;
result = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
else if((current_slice % uint(4)) == uint(1))
{
denominator = unpacked_s[1].y;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].y;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].y;
beta_param = unpacked_s[4].y;
result = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
else if((current_slice % uint(4)) == uint(2))
{
denominator = unpacked_s[1].z;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].z;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].z;
beta_param = unpacked_s[4].z;
result = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
else
{
denominator = unpacked_s[1].w;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].w;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].w;
beta_param = unpacked_s[4].w;
result = ACTIVATION_FUNC(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param));
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
}
}
#endif /*DATA_TYPE_FP16*/