blob: 33c8b81c1d7a7f3e52dc3b79e86ba343f712ea75 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLPixelWiseMultiplicationKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <cmath>
#include <cstdlib>
#include <set>
#include <string>
using namespace arm_compute;
CLPixelWiseMultiplicationKernel::CLPixelWiseMultiplicationKernel()
: _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}
void CLPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float scale,
ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
// Auto initialize output if not initialized
{
set_shape_if_empty(*output->info(), input1->info()->tensor_shape());
if(input1->info()->data_type() == DataType::S16 || input2->info()->data_type() == DataType::S16)
{
set_format_if_unknown(*output->info(), Format::S16);
}
else if(input1->info()->data_type() == DataType::F32 || input2->info()->data_type() == DataType::F32)
{
set_format_if_unknown(*output->info(), Format::F32);
}
}
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input1, input2, output);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QS8, DataType::QS16, DataType::S16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QS8, DataType::QS16, DataType::S16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QS8, DataType::QS16, DataType::S16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MSG(output->info()->data_type() == DataType::U8 && (input1->info()->data_type() != DataType::U8 || input2->info()->data_type() != DataType::U8),
"Output can only be U8 if both inputs are U8");
ARM_COMPUTE_ERROR_ON_MSG(scale < 0, "Scale cannot be negative. ");
if(is_data_type_fixed_point(input1->info()->data_type()))
{
// All data types must be all QS8 or all QS16
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input1, input2, output);
ARM_COMPUTE_ERROR_ON_MSG(scale != 1, "Unsupported scaling factor for QS8/QS16. Scale must be 1.");
}
_input1 = input1;
_input2 = input2;
_output = output;
int scale_int = -1;
// Extract sign, exponent and mantissa
int exponent = 0;
float normalized_mantissa = std::frexp(scale, &exponent);
// Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
// frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
// Moreover, it will be negative as we deal with 1/2^n
if((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
{
// Store the positive exponent. We know that we compute 1/2^n
// Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
scale_int = std::abs(exponent - 1);
}
std::string data_type;
std::string compute_type;
// Check if it has float inputs and output
if(is_data_type_float(input1->info()->data_type()) || is_data_type_float(input2->info()->data_type()))
{
scale_int = -1;
compute_type = (input1->info()->data_type() == DataType::F32 || input2->info()->data_type() == DataType::F32) ? "float" : "half";
data_type = "DATA_TYPE_FLOAT";
}
else
{
if(input1->info()->data_type() == DataType::S16 || input2->info()->data_type() == DataType::S16)
{
compute_type = "int";
}
else if(input1->info()->data_type() == DataType::QS8)
{
compute_type = "qs8";
}
else if(input1->info()->data_type() == DataType::QS16)
{
compute_type = "qs16";
}
else
{
compute_type = "ushort";
}
data_type = "DATA_TYPE_INT";
}
// Construct kernel name
std::string kernel_name = "pixelwise_mul";
kernel_name += (scale_int >= 0) ? "_int" : "_float";
// Set kernel build options
std::set<std::string> build_opts;
build_opts.emplace((overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->info()->data_type())) ? "-DWRAP" : "-DSATURATE");
build_opts.emplace((rounding_policy == RoundingPolicy::TO_ZERO) ? "-DROUND=_rtz" : "-DROUND=_rte");
if(is_data_type_fixed_point(input1->info()->data_type()))
{
build_opts.emplace("-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input1->info()->fixed_point_position()));
}
build_opts.emplace("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->info()->data_type()));
build_opts.emplace("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->info()->data_type()));
build_opts.emplace("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type()));
build_opts.emplace("-DDATA_TYPE_RES=" + compute_type);
build_opts.emplace("-D" + data_type);
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts));
// Set scale argument
unsigned int idx = 3 * num_arguments_per_3D_tensor(); //Skip the inputs and output parameters
if(scale_int >= 0)
{
_kernel.setArg(idx++, scale_int);
}
else
{
_kernel.setArg(idx++, scale);
}
// Configure kernel window
constexpr unsigned int num_elems_processed_per_iteration = 16;
Window win = calculate_max_window(*input1->info(), Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input1_access(input1->info(), 0, num_elems_processed_per_iteration);
AccessWindowHorizontal input2_access(input2->info(), 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win, input1_access, input2_access, output_access);
ValidRegion valid_region = intersect_valid_regions(input1->info()->valid_region(),
input2->info()->valid_region());
output_access.set_valid_region(win, valid_region);
ICLKernel::configure(win);
}
void CLPixelWiseMultiplicationKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
Window slice = window.first_slice_window_3D();
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input1, slice);
add_3D_tensor_argument(idx, _input2, slice);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice);
}
while(window.slide_window_slice_3D(slice));
}