blob: 7350255ebe28a3434b574b9999f4704cda6bd28b [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION
#include "arm_compute/core/experimental/DependencyGraph.h"
#include <algorithm>
#include <deque>
#include <set>
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
DependencyGraph::DependencyGraph(const AdjList &adj_src_tensors, const AdjList &adj_dst_tensors, const AdjList &adj_src_ops, const AdjList &adj_dst_ops, std::map<Id, Id> merge_points)
: _adj_src_tensors{ adj_src_tensors }, _adj_dst_tensors{ adj_dst_tensors }, _adj_src_ops{ adj_src_ops }, _adj_dst_ops{ adj_dst_ops }, _merge_to_internal{ merge_points }, _operator_id{}, _tensor_id{}
{
}
DependencyGraph::DependencyGraph(const std::vector<Id> &imported_tensors)
: _adj_src_tensors{}, _adj_dst_tensors{}, _adj_src_ops{}, _adj_dst_ops{}, _merge_to_internal{}, _operator_id{}, _tensor_id{}
{
for(auto t : imported_tensors)
{
_adj_src_ops[t] = {};
_adj_dst_ops[t] = {};
}
}
Status DependencyGraph::update_merge_point(Id t_id, Id merge_point)
{
if(_merge_to_internal.find(merge_point) == _merge_to_internal.end())
{
return Status{ ErrorCode::RUNTIME_ERROR, "Merge point does not exist" };
}
_merge_to_internal[merge_point] = t_id;
return Status{};
}
DependencyGraph::Id DependencyGraph::add_tensor(Id merge_tensor)
{
Id new_tensor{ empty_id() };
if(merge_tensor != empty_id())
{
if(_merge_to_internal.find(merge_tensor) != _merge_to_internal.end())
{
new_tensor = _merge_to_internal[merge_tensor];
}
else
{
new_tensor = insert_new_tensor();
_merge_to_internal[merge_tensor] = new_tensor;
}
}
else
{
new_tensor = insert_new_tensor();
}
return new_tensor;
}
void DependencyGraph::remove_tensor(Id tensor)
{
for(auto src_op : _adj_src_ops.at(tensor))
{
auto &dst_tensors = _adj_dst_tensors.at(src_op);
dst_tensors.erase(
std::remove(std::begin(dst_tensors), std::end(dst_tensors), tensor),
std::end(dst_tensors));
}
for(auto dst_op : _adj_dst_ops.at(tensor))
{
auto &src_tensors = _adj_src_tensors.at(dst_op);
src_tensors.erase(
std::remove(std::begin(src_tensors), std::end(src_tensors), tensor),
std::end(src_tensors));
}
_adj_src_ops.erase(tensor);
_adj_dst_ops.erase(tensor);
}
std::pair<Status, DependencyGraph::Id> DependencyGraph::add_operator(const std::vector<Id> &inputs, const std::vector<Id> &outputs)
{
Id new_op = insert_new_op();
for(Id tensor : inputs)
{
link_input(new_op, tensor);
}
for(Id tensor : outputs)
{
link_output(new_op, tensor);
}
// Use topological sort in order to detect possible loops / cycles.
// NOTE: This is unscalable. We'll need to have a better way of detecting loops or relax this invariant during operation, and add a validate method instead
return std::pair<Status, DependencyGraph::Id>(topological_sort().first, new_op);
}
void DependencyGraph::remove_operator(Id op)
{
for(auto src_tensor : _adj_src_tensors.at(op))
{
auto &dst_ops = _adj_dst_ops.at(src_tensor);
dst_ops.erase(
std::remove(std::begin(dst_ops), std::end(dst_ops), op),
std::end(dst_ops));
}
for(auto dst_tensor : _adj_dst_tensors.at(op))
{
auto &src_ops = _adj_src_ops.at(dst_tensor);
src_ops.erase(
std::remove(std::begin(src_ops), std::end(src_ops), op),
std::end(src_ops));
}
_adj_src_tensors.erase(op);
_adj_dst_tensors.erase(op);
}
std::map<DependencyGraph::Id, DependencyGraph::Id> DependencyGraph::get_merge_points() const
{
return _merge_to_internal;
}
std::vector<DependencyGraph::Id> DependencyGraph::get_root_ops() const
{
std::vector<Id> ops{};
const auto op_list = all_ops();
for(auto op : op_list)
{
if(src_ops(op).empty())
{
ops.emplace_back(op);
}
}
return ops;
}
std::vector<DependencyGraph::Id> DependencyGraph::get_dst_ops() const
{
std::vector<Id> ops{};
const auto op_list = all_ops();
for(auto op : op_list)
{
if(dst_ops(op).empty())
{
ops.emplace_back(op);
}
}
return ops;
}
std::vector<DependencyGraph::Id> DependencyGraph::src_tensors(Id op) const
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
return _adj_src_tensors.at(op);
}
std::vector<DependencyGraph::Id> DependencyGraph::dst_tensors(Id op) const
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
return _adj_dst_tensors.at(op);
}
std::vector<DependencyGraph::Id> DependencyGraph::src_tensors() const
{
std::vector<Id> tensors;
for(auto tensor_src_ops : _adj_src_ops)
{
if(tensor_src_ops.second.empty())
tensors.push_back(tensor_src_ops.first);
}
return tensors;
}
std::vector<DependencyGraph::Id> DependencyGraph::dst_tensors() const
{
std::vector<Id> tensors;
for(auto tensor_dst_ops : _adj_dst_ops)
{
if(tensor_dst_ops.second.empty())
tensors.push_back(tensor_dst_ops.first);
}
return tensors;
}
std::vector<DependencyGraph::Id> DependencyGraph::src_ops_from_tensor(Id tensor) const
{
return _adj_src_ops.at(tensor);
}
std::vector<DependencyGraph::Id> DependencyGraph::dst_ops_from_tensor(Id tensor) const
{
return _adj_dst_ops.at(tensor);
}
std::vector<DependencyGraph::Id> DependencyGraph::all_ops() const
{
std::vector<Id> ops{};
std::transform(std::begin(_adj_src_tensors), std::end(_adj_src_tensors), std::back_inserter(ops), [](const auto & it)
{
return it.first;
});
return ops;
}
bool DependencyGraph::path_exists_from_tensor_to_op(Id src_tensor, Id dst_op) const
{
for(auto child_op : dst_ops_from_tensor(src_tensor))
{
if(path_exists_from_op_to_op(child_op, dst_op))
{
return true;
}
}
return false;
}
bool DependencyGraph::path_exists_from_op_to_op(Id src_op, Id dst_op) const
{
if(src_op == dst_op)
{
return true;
}
if(is_in(src_op, get_dst_ops()))
{
return false;
}
for(auto child_tensor : dst_tensors(src_op))
{
if(path_exists_from_tensor_to_op(child_tensor, dst_op))
{
return true;
}
}
return false;
}
std::vector<DependencyGraph::Id> DependencyGraph::all_tensors() const
{
std::vector<Id> tensors{};
std::transform(std::begin(_adj_src_ops), std::end(_adj_src_ops), std::back_inserter(tensors), [](const auto & it)
{
return it.first;
});
return tensors;
}
unsigned int DependencyGraph::number_of_ops() const
{
return _adj_src_tensors.size();
}
unsigned int DependencyGraph::number_of_tensors() const
{
return _adj_src_ops.size();
}
DependencyGraph::Id DependencyGraph::insert_new_tensor()
{
Id new_tensor = _tensor_id.alloc();
_adj_src_ops[new_tensor] = {};
_adj_dst_ops[new_tensor] = {};
return new_tensor;
}
DependencyGraph::Id DependencyGraph::insert_new_op()
{
Id new_op = _operator_id.alloc();
_adj_src_tensors[new_op] = {};
_adj_dst_tensors[new_op] = {};
return new_op;
}
void DependencyGraph::link_input(Id op, Id in_tensor)
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
ARM_COMPUTE_ERROR_ON(!tensor_exists(in_tensor));
ARM_COMPUTE_ERROR_ON(are_connected(op, in_tensor));
_adj_src_tensors[op].push_back(in_tensor);
_adj_dst_ops[in_tensor].push_back(op);
}
void DependencyGraph::link_output(Id op, Id out_tensor)
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
ARM_COMPUTE_ERROR_ON(!tensor_exists(out_tensor));
ARM_COMPUTE_ERROR_ON(are_connected(op, out_tensor));
_adj_dst_tensors[op].push_back(out_tensor);
_adj_src_ops[out_tensor].push_back(op);
}
bool DependencyGraph::tensor_exists(Id tensor) const
{
return _adj_src_ops.find(tensor) != _adj_src_ops.end() && _adj_dst_ops.find(tensor) != _adj_dst_ops.end();
}
bool DependencyGraph::operator_exists(Id op) const
{
return _adj_src_tensors.find(op) != _adj_src_tensors.end() && _adj_dst_tensors.find(op) != _adj_dst_tensors.end();
}
bool DependencyGraph::is_src_tensor(Id tensor) const
{
if(!tensor_exists(tensor))
{
return false;
}
return _adj_src_ops.at(tensor).empty();
}
bool DependencyGraph::is_dst_tensor(Id tensor) const
{
if(!tensor_exists(tensor))
{
return false;
}
return _adj_dst_ops.at(tensor).empty();
}
bool DependencyGraph::is_src_tensor_of(Id op, Id tensor) const
{
if(!operator_exists(op) || !tensor_exists(tensor))
{
return false;
}
const auto op_inputs = src_tensors(op);
return std::find(op_inputs.begin(), op_inputs.end(), tensor) != op_inputs.end();
}
bool DependencyGraph::is_dst_tensor_of(Id op, Id tensor) const
{
if(!operator_exists(op) || !tensor_exists(tensor))
{
return false;
}
const auto op_outputs = dst_tensors(op);
return std::find(op_outputs.begin(), op_outputs.end(), tensor) != op_outputs.end();
}
bool DependencyGraph::are_connected(Id op, Id tensor) const
{
return is_src_tensor_of(op, tensor) || is_dst_tensor_of(op, tensor);
}
std::vector<DependencyGraph::Id> DependencyGraph::src_ops(Id op) const
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
std::vector<Id> ops{};
for(Id src_tensor : src_tensors(op))
{
ops.insert(ops.end(), std::begin(_adj_src_ops.at(src_tensor)), std::end(_adj_src_ops.at(src_tensor)));
}
return ops;
}
std::vector<DependencyGraph::Id> DependencyGraph::dst_ops(Id op) const
{
ARM_COMPUTE_ERROR_ON(!operator_exists(op));
std::vector<Id> ops{};
for(Id dst_tensor : _adj_dst_tensors.at(op))
{
ops.insert(ops.end(), std::begin(_adj_dst_ops.at(dst_tensor)), std::end(_adj_dst_ops.at(dst_tensor)));
}
return ops;
}
std::pair<Status, std::vector<DependencyGraph::OpPack>> DependencyGraph::topological_sort() const
{
// Incident degree (number of source operators to an op)
std::map<Id, unsigned int> in_degree{};
std::set<Id> visited_ops{};
std::deque<Id> zero_in_degree_ops{};
std::vector<OpPack> sorted_op_packs{};
for(auto op : all_ops())
{
const auto degree = src_ops(op).size();
in_degree[op] = degree;
if(degree == 0)
{
zero_in_degree_ops.push_back(op);
visited_ops.insert(op);
}
}
while(!zero_in_degree_ops.empty())
{
const Id op = zero_in_degree_ops.front();
zero_in_degree_ops.pop_front();
sorted_op_packs.push_back(OpPack{ op, src_tensors(op), dst_tensors(op) });
for(const auto next_op : dst_ops(op))
{
if(in_degree[next_op] > 0)
{
in_degree[next_op]--;
}
if(in_degree[next_op] == 0 && visited_ops.find(next_op) == visited_ops.end())
{
zero_in_degree_ops.push_back(next_op);
visited_ops.insert(op);
}
}
}
// If there are remaining ops with in_degree > 0, then it's indication that there are cycles in the graph
Status st{};
if(sorted_op_packs.size() != number_of_ops())
{
st = Status{ ErrorCode::RUNTIME_ERROR, "Cycles or loops are not allowed in a DependencyGraph" };
}
return std::make_pair(st, sorted_op_packs);
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute
#endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */