blob: 663b89e235765c6f81e8a90851979b42d76908f9 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/experimental/dynamic_fusion/WorkloadImpl/ClKernelGraph.h"
#include "src/core/experimental/dynamic_fusion/WorkloadImpl/OperatorGraphImpl.h"
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
namespace
{
Status add_kernel_tensor(ClKernelGraph &k_graph, const OperatorGraph::Implementation &op_graph, const OpTensorContent &op_tensor, MemoryType memory_type, AuxMemoryInfo memory_info,
DependencyGraph::Id &id)
{
ARM_COMPUTE_UNUSED(op_graph);
return k_graph.add_kernel_tensor(op_tensor.desc, memory_type, memory_info, id, op_tensor.id);
}
Status add_kernel_tensor(ClKernelGraph &k_graph, const OperatorGraph::Implementation &op_graph, const OpTensorContent &op_tensor, DependencyGraph::Id &id)
{
// For a tensor t
// 1. If t is a src tensor of the entire op graph, then it's Core.
// (Optimisation opportunity, if we guanrantee that all translate methods are called in topological order, we can always assign t to Core.
// Because even if the op is non-root (which would mean t should be an Aux tensor), the src tensors would be already be determined by the ancestor ops (topological order), and thus would not be overriden by it)
// 2. If t is a dst tensor of the entire op graph, then it's Core.
// 3. Aux tensor with Persistent and Prepare lifetime is manually specified
// 4. All other ts not captured by the above are assigned Aux, with lifetime of Temporary.
// kernel_graph.add_kernel_tensor(input->desc, );
bool is_src_tensor_of_graph = is_in(op_tensor.id, op_graph.graph.src_tensors());
bool is_dst_tensor_of_graph = is_in(op_tensor.id, op_graph.graph.dst_tensors());
MemoryType memory_type;
AuxMemoryInfo memory_info;
if(is_src_tensor_of_graph || is_dst_tensor_of_graph)
{
memory_type = MemoryType::Core;
}
else
{
memory_type = MemoryType::Auxiliary;
memory_info.lifetime = AuxMemoryLifetime::Temporary;
memory_info.size = op_tensor.desc->total_size();
}
return add_kernel_tensor(k_graph, op_graph, op_tensor, memory_type, memory_info, id);
}
/** Get the suitable kernel size for using direct convolution method with NHWC data layout.
*
* @note Duplicate of the function with the same name in src/gpu/cl/operators/ClConv2d.cpp
*
* @note Direct convolution should be executed when the kernel has the spatial dimensions greater than or equal to the value returned by this function
*
* @param[in] gpu_target GPU target
*
* @return the suitable kernel size for using direct convolution method with NHWC data layout
*/
size_t get_direct_conv_kernel_threshold_nhwc(arm_compute::GPUTarget gpu_target)
{
switch(gpu_target)
{
case arm_compute::GPUTarget::G76:
case arm_compute::GPUTarget::G77:
case arm_compute::GPUTarget::G78:
return 5;
case arm_compute::GPUTarget::G71:
case arm_compute::GPUTarget::G72:
case arm_compute::GPUTarget::MIDGARD:
case arm_compute::GPUTarget::BIFROST:
return 7;
default:
return 5;
}
}
} // namespace
bool operator==(const OpTensor &t0, const OpTensor &t1)
{
return std::make_tuple(t0.id()) == std::make_tuple(t1.id());
}
bool operator==(const Conv2dDescriptor &conv2d0, const Conv2dDescriptor &conv2d1)
{
return std::make_tuple(conv2d0.stride, conv2d0.dilation) == std::make_tuple(conv2d1.stride, conv2d1.dilation);
}
bool operator==(const ElementwiseDescriptor &ed0, const ElementwiseDescriptor &ed1)
{
return ed0.op == ed1.op; // Compare Arithmatic Operations of two ElementwiseDescriptor objects
}
bool operator==(const FloorDescriptor &, const FloorDescriptor &)
{
return std::make_tuple() == std::make_tuple(); // Currently two Floor ops are always the same
}
bool Conv2dContent::operator==(const OperatorContent &other) const
{
const auto converted = *utils::cast::polymorphic_downcast<const Conv2dContent *>(&other);
return desc == converted.desc;
}
bool ElementwiseContent::operator==(const OperatorContent &other) const
{
const auto converted = *utils::cast::polymorphic_downcast<const ElementwiseContent *>(&other);
return desc == converted.desc;
}
bool FloorContent::operator==(const OperatorContent &other) const
{
const auto converted = *utils::cast::polymorphic_downcast<const FloorContent *>(&other);
return desc == converted.desc;
}
ConvolutionMethod Conv2dContent::select_conv_method(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const Conv2dDescriptor &conv2d_desc, const GPUTarget gpu_target)
{
// Modified from ClConv2d::get_convolution_method
ARM_COMPUTE_ERROR_ON_NULLPTR(src);
ARM_COMPUTE_ERROR_ON_NULLPTR(dst);
ARM_COMPUTE_ERROR_ON_NULLPTR(weights);
const PadStrideInfo legacy_pad_stride(conv2d_desc.stride.x(), conv2d_desc.stride.y(), conv2d_desc.pad.left, conv2d_desc.pad.right, conv2d_desc.pad.top, conv2d_desc.pad.bottom, DimensionRoundingType{});
const Size2D dilation = conv2d_desc.dilation;
const size_t idx_w = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT);
const size_t idx_c = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::CHANNEL);
/* Input spatial dims, kernel size, IFM/OFM, conv info*/
using ConvolutionConfiguration = std::tuple<Size2D, Size2D, Size2D, PadStrideInfo, DataLayout>;
using ConfigurationMethod = std::pair<ConvolutionConfiguration, ConvolutionMethod>;
const std::vector<ConfigurationMethod> known_configs =
{
// Alexnet
ConfigurationMethod(ConvolutionConfiguration(Size2D(27U, 27U), Size2D(5U, 5U), Size2D(48U, 128U), PadStrideInfo(1U, 1U, 2U, 2U), DataLayout::NCHW), ConvolutionMethod::DIRECT),
// VGG16 / VGG19
ConfigurationMethod(ConvolutionConfiguration(Size2D(224U, 224U), Size2D(3U, 3U), Size2D(3U, 64U), PadStrideInfo(1U, 1U, 1U, 1U), DataLayout::NCHW), ConvolutionMethod::DIRECT),
// Mobilenet 224
ConfigurationMethod(ConvolutionConfiguration(Size2D(224U, 224U), Size2D(3U, 3U), Size2D(3U, 32U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR), DataLayout::NCHW), ConvolutionMethod::GEMM),
// Mobilenet 160
ConfigurationMethod(ConvolutionConfiguration(Size2D(160U, 160U), Size2D(3U, 3U), Size2D(3U, 24U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR), DataLayout::NCHW), ConvolutionMethod::GEMM),
// Mobilenet 224
ConfigurationMethod(ConvolutionConfiguration(Size2D(224U, 224U), Size2D(3U, 3U), Size2D(3U, 32U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR), DataLayout::NHWC), ConvolutionMethod::GEMM),
// Mobilenet 160
ConfigurationMethod(ConvolutionConfiguration(Size2D(160U, 160U), Size2D(3U, 3U), Size2D(3U, 24U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR), DataLayout::NHWC), ConvolutionMethod::GEMM),
};
const auto find_config = [&](ConfigurationMethod c)
{
const ConvolutionConfiguration config = c.first;
const PadStrideInfo info = std::get<3>(config);
const DataLayout data_layout = std::get<4>(config);
return std::get<0>(config) == Size2D(src->dimension(idx_w), src->dimension(idx_h)) && std::get<1>(config) == Size2D(weights->dimension(idx_w), weights->dimension(idx_h))
&& std::get<2>(config) == Size2D(weights->dimension(idx_c), weights->dimension(3)) && info.pad_top() == legacy_pad_stride.pad_top() && info.pad_right() == legacy_pad_stride.pad_right()
&& info.pad_bottom() == legacy_pad_stride.pad_bottom() && info.pad_left() == legacy_pad_stride.pad_left() && info.stride() == legacy_pad_stride.stride() && (data_layout == src->data_layout());
};
std::vector<ConfigurationMethod>::const_iterator found;
if((found = std::find_if(known_configs.begin(), known_configs.end(), find_config)) != known_configs.end())
{
return (*found).second;
}
if(dilation != Size2D(1U, 1U))
{
return ConvolutionMethod::GEMM;
}
else
{
if(src->data_layout() == DataLayout::NCHW)
{
ARM_COMPUTE_ERROR("NCHW not supported");
}
else
{
const bool is_direct_valid = bool(ClDirectConv2dKernel::validate(src, weights, nullptr, dst, ClDirectConv2dKernelDescriptor{ conv2d_desc }));
const size_t kernel_sz_direct_conv_thr = get_direct_conv_kernel_threshold_nhwc(gpu_target);
// SRGAN case
if((src->dimension(idx_h) > 720U) && (dst->dimension(idx_h) > 720U) && (weights->dimension(idx_h) == 9) && (conv2d_desc.pad.top < 3)
&& is_direct_valid)
{
return ConvolutionMethod::DIRECT;
}
// Floating-point case: GeMM/Direct
if(is_data_type_float(src->data_type()))
{
// Get dst shape
TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, legacy_pad_stride);
const bool is_large_kernel_sz = (weights->dimension(idx_w) >= kernel_sz_direct_conv_thr) && (weights->dimension(idx_h) >= kernel_sz_direct_conv_thr);
const bool is_ifm_ge_16 = src->dimension(idx_c) >= 16;
const bool is_ofm_lte_8 = weights->dimension(3U) <= 8;
const bool workload_gte_8192 = (output_shape[0] * output_shape[1] * output_shape[2]) / 16 >= 8192;
const bool is_ifm_gt_ofm = src->dimension(idx_c) > weights->dimension(3U);
// Direct convolution case
if(is_direct_valid)
{
if((gpu_target == arm_compute::GPUTarget::G71 || gpu_target == arm_compute::GPUTarget::G72 || gpu_target == arm_compute::GPUTarget::MIDGARD))
{
if(is_large_kernel_sz && is_ifm_ge_16 && is_ifm_gt_ofm)
{
return ConvolutionMethod::DIRECT;
}
}
else
{
if((is_large_kernel_sz && workload_gte_8192 && is_ifm_ge_16) || (is_ofm_lte_8 && is_ifm_ge_16))
{
return ConvolutionMethod::DIRECT;
}
}
}
// Default case
return ConvolutionMethod::GEMM;
}
// Generic case for quantized. Only GeMM
return ConvolutionMethod::GEMM;
}
}
return ConvolutionMethod::DIRECT;
}
Status Conv2dContent::translate(ClKernelGraph &kernel_graph) const
{
const auto input = _tensors.get_const_tensor(TensorType::ACL_SRC_0);
const auto weight = _tensors.get_const_tensor(TensorType::ACL_SRC_1);
const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0);
const auto method = forced_method_enabled ? forced_method : Conv2dContent::select_conv_method(input->desc, weight->desc, dst->desc, desc, CLScheduler::get().target());
switch(method)
{
case ConvolutionMethod::DIRECT:
{
return translate_direct_conv2d(kernel_graph);
}
default:
{
ARM_COMPUTE_RETURN_ERROR_MSG("Not implemented");
}
}
return Status{};
}
Status Conv2dContent::translate_direct_conv2d(ClKernelGraph &kernel_graph) const
{
const auto input = _tensors.get_const_tensor(TensorType::ACL_SRC_0);
const auto weight = _tensors.get_const_tensor(TensorType::ACL_SRC_1);
const auto bias = _tensors.get_const_tensor(TensorType::ACL_SRC_2);
const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weight, dst);
ITensorDescPack<ClKernelTensor> tensors;
DependencyGraph::Id input_id;
auto st = add_kernel_tensor(kernel_graph, *_graph, *input, input_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_0, kernel_graph.get_tensor(input_id));
DependencyGraph::Id weight_id;
st = add_kernel_tensor(kernel_graph, *_graph, *weight, weight_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_1, kernel_graph.get_tensor(weight_id));
if(bias != nullptr)
{
DependencyGraph::Id bias_id;
st = add_kernel_tensor(kernel_graph, *_graph, *bias, bias_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_2, kernel_graph.get_tensor(bias_id));
}
DependencyGraph::Id dst_id;
st = add_kernel_tensor(kernel_graph, *_graph, *dst, dst_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_DST_0, kernel_graph.get_tensor(dst_id));
DependencyGraph::Id direct_conv2d_id;
const auto kernel_desc = ClDirectConv2dKernelDescriptor{ desc };
st = ClDirectConv2dKernel::validate(input->desc, weight->desc, bias == nullptr ? nullptr : bias->desc, dst->desc, kernel_desc);
ARM_COMPUTE_RETURN_ON_ERROR(st);
ClKernelConfig config{ UnitWorkloadStage{ UnitWorkloadStage::Stage::Run }, TileDescriptor{}, StoreType::TStoreIndirectWidthSelect };
st = kernel_graph.add_kernel<ClDirectConv2dKernel>(config, kernel_desc, tensors, direct_conv2d_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
ARM_COMPUTE_UNUSED(direct_conv2d_id);
return Status{};
}
Status ElementwiseContent::translate(ClKernelGraph &kernel_graph) const
{
const auto lhs = _tensors.get_const_tensor(TensorType::ACL_SRC_0);
const auto rhs = _tensors.get_const_tensor(TensorType::ACL_SRC_1);
const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(lhs, rhs, dst);
ITensorDescPack<ClKernelTensor> tensors;
DependencyGraph::Id lhs_id;
auto st = add_kernel_tensor(kernel_graph, *_graph, *lhs, lhs_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_0, kernel_graph.get_tensor(lhs_id));
DependencyGraph::Id rhs_id;
st = add_kernel_tensor(kernel_graph, *_graph, *rhs, rhs_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_1, kernel_graph.get_tensor(rhs_id));
DependencyGraph::Id dst_id;
st = add_kernel_tensor(kernel_graph, *_graph, *dst, dst_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_DST_0, kernel_graph.get_tensor(dst_id));
DependencyGraph::Id add_id;
ClKernelConfig config{ UnitWorkloadStage{ UnitWorkloadStage::Stage::Run }, TileDescriptor{}, StoreType::TStoreIndirectWidthSelect };
st = ClElementwiseKernel::validate(lhs->desc, rhs->desc, dst->desc);
ARM_COMPUTE_RETURN_ON_ERROR(st);
st = kernel_graph.add_kernel<ClElementwiseKernel>(config, ClElementwiseKernelDescriptor{ desc }, tensors, add_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
ARM_COMPUTE_UNUSED(add_id);
return Status{};
}
Status FloorContent::translate(ClKernelGraph &kernel_graph) const
{
const auto src = _tensors.get_const_tensor(TensorType::ACL_SRC_0);
const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ITensorDescPack<ClKernelTensor> tensors;
DependencyGraph::Id src_id;
auto st = add_kernel_tensor(kernel_graph, *_graph, *src, src_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_SRC_0, kernel_graph.get_tensor(src_id));
DependencyGraph::Id dst_id;
st = add_kernel_tensor(kernel_graph, *_graph, *dst, dst_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
tensors.add_const_tensor(ACL_DST_0, kernel_graph.get_tensor(dst_id));
DependencyGraph::Id add_id;
ClKernelConfig config{ UnitWorkloadStage{ UnitWorkloadStage::Stage::Run }, TileDescriptor{}, StoreType::TStoreIndirectWidthSelect };
st = ClFloorKernel::validate(src->desc, dst->desc);
ARM_COMPUTE_RETURN_ON_ERROR(st);
st = kernel_graph.add_kernel<ClFloorKernel>(config, ClFloorKernelDescriptor{ desc }, tensors, add_id);
ARM_COMPUTE_RETURN_ON_ERROR(st);
return Status{};
}
std::vector<const OperatorContent *> traverse(const OperatorGraph::Implementation &graph)
{
std::vector<const OperatorContent *> ops;
const auto sorted = graph.graph.topological_sort();
for(const auto &pack : sorted.second)
{
ops.push_back(graph.operators.at(pack.op).get());
}
return ops;
}
std::vector<OperatorContent *> traverse(OperatorGraph::Implementation &graph)
{
std::vector<OperatorContent *> ops;
const auto sorted = graph.graph.topological_sort();
for(const auto &pack : sorted.second)
{
ops.push_back(graph.operators.at(pack.op).get());
}
return ops;
}
Status translate(ClKernelGraph &kernel_graph, const OperatorGraph::Implementation &op_graph)
{
for(const auto &op : traverse(op_graph))
{
const auto st = op->translate(kernel_graph);
ARM_COMPUTE_RETURN_ON_ERROR(st);
}
return Status{};
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute
#endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */