blob: 30e19d59072fb65e61963032959f85e2cb10811d [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION
#include "src/gpu/cl/kernels/experimental/dynamic_fusion/ClCompositeKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/experimental/dynamic_fusion/ClKernelBuildingAPI.h"
#include "src/gpu/cl/ClKernelLibrary.h"
#include "support/Cast.h"
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
using namespace arm_compute::opencl;
void ClCompositeKernel::configure(const ClCompileContext &compile_ctx, const ClKernelCode &cl_code)
{
// Create kernel from kernel source string
opencl::ClKernelLibrary &klib = opencl::ClKernelLibrary::get();
_kernel = static_cast<cl::Kernel>(compile_ctx.create_kernel(cl_code.name,
"" /* Program name: Used to as part of a unique string for built kernel cache. Not needed */,
cl_code.code,
klib.kernel_path() /* Kernel path: Used in cases of embedded kernels */,
cl_code.build_options.options(),
false /* Is source binary */));
// Configure execution window
IClKernel::configure_internal(cl_code.window);
// Set config id for lws tuning
_config_id = cl_code.config_id;
// Set kernel arguments
_arguments = cl_code.arguments;
}
inline void ClCompositeKernel::add_tensor_argument(unsigned int &idx, const ClKernelArgDescriptor &arg, const ICLTensor *tensor, const Window &arg_slice, std::vector<cl::Image2D> &cl_images)
{
switch(arg.tensor_arg_type)
{
case ClKernelTensorArgType::Scalar:
{
ARM_COMPUTE_ERROR("Unsupported yet");
break;
}
case ClKernelTensorArgType::Vector:
{
add_1D_tensor_argument(idx, tensor, arg_slice);
break;
}
case ClKernelTensorArgType::Image:
{
add_2D_tensor_argument(idx, tensor, arg_slice);
break;
}
case ClKernelTensorArgType::Image_Reinterpret_As_3D:
{
add_2D_tensor_argument(idx, tensor, arg_slice);
const unsigned int total_cross_plane_pad = tensor->info()->padding().top + tensor->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(total_cross_plane_pad));
break;
}
case ClKernelTensorArgType::Image_Export_To_ClImage2D:
{
const TensorShape shape2d(tensor->info()->dimension(0) / 4, tensor->info()->dimension(1) * tensor->info()->dimension(2) * tensor->info()->dimension(3));
const size_t image_row_pitch = tensor->info()->strides_in_bytes()[1];
cl::Image2D tensor_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), tensor->cl_buffer(), shape2d, tensor->info()->data_type(), image_row_pitch);
cl_images.push_back(tensor_image2d);
_kernel.setArg(idx++, tensor_image2d);
break;
}
case ClKernelTensorArgType::Image_3D:
{
add_2D_tensor_argument(idx, tensor, arg_slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(tensor->info()->strides_in_bytes()[2]));
break;
}
case ClKernelTensorArgType::Image_3D_Export_To_ClImage2D:
{
const TensorShape shape2d(tensor->info()->dimension(0) / 4, tensor->info()->dimension(1) * tensor->info()->dimension(2) * tensor->info()->dimension(3));
const size_t image_row_pitch = tensor->info()->strides_in_bytes()[1];
cl::Image2D tensor_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), tensor->cl_buffer(), shape2d, tensor->info()->data_type(), image_row_pitch);
cl_images.push_back(tensor_image2d);
_kernel.setArg(idx++, tensor_image2d);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(tensor->info()->strides_in_bytes()[2]));
break;
}
case ClKernelTensorArgType::Tensor_3D:
{
add_3D_tensor_argument(idx, tensor, arg_slice);
break;
}
case ClKernelTensorArgType::Tensor_4D:
{
add_4D_tensor_argument(idx, tensor, arg_slice);
break;
}
case ClKernelTensorArgType::Tensor_4D_t_Buffer:
{
add_4d_tensor_nhwc_argument(idx, tensor);
break;
}
case ClKernelTensorArgType::Tensor_4D_t_Image:
{
const size_t image_w = tensor->info()->dimension(0) / 4;
const size_t image_h = tensor->info()->tensor_shape().total_size_upper(1);
const size_t image_stride_y = tensor->info()->strides_in_bytes()[1];
cl::Image2D tensor_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), tensor->cl_buffer(),
TensorShape(image_w, image_h), tensor->info()->data_type(), image_stride_y);
cl_images.push_back(tensor_image2d);
_kernel.setArg(idx++, tensor_image2d);
add_4d_tensor_nhwc_argument(idx, tensor);
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported");
}
}
}
void ClCompositeKernel::run_composite_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue, const ClExecutionDescriptor &exec_desc)
{
ARM_COMPUTE_UNUSED(exec_desc);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
Window slice = window.first_slice_window_3D();
// Don't slice matrix along the z dimension if matrix has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
Window slice_fixed_z = slice;
slice_fixed_z.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_fixed_z.set(Window::DimY, Window::Dimension(0, 1, 1));
unsigned int idx = 0;
do
{
// Set kernel arguments
Window arg_slice = slice;
// CLImages created from tensor arguments. Need to be retained until enqueue
std::vector<cl::Image2D> cl_images;
for(auto id_arg : _arguments)
{
const auto arg = id_arg.second;
auto tensor = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(arg.arg_id));
ARM_COMPUTE_ERROR_ON_NULLPTR(tensor);
ARM_COMPUTE_ERROR_ON_NULLPTR(tensor->info());
if(!arg.slide_along_dimz)
{
// The stride_z for matrix must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(tensor->info()->strides_in_bytes()[3] != 0);
arg_slice = slice_fixed_z;
}
add_tensor_argument(idx, arg, tensor, arg_slice, cl_images);
}
// Dispatch kernel
bool use_dummy_work_items = false;
enqueue(queue, *this, slice, lws_hint(), use_dummy_work_items);
}
while(!exec_desc.skip_sliding_window && window.slide_window_slice_3D(slice));
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute
#endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */