blob: 1b1e8aa761e57faf3529e94645bc6fed9e391c3b [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION
#include "src/core/experimental/dynamic_fusion/ClKernelBuildingAPI.h"
#include "src/core/utils/helpers/float_ops.h"
#include "tests/CL/CLAccessor.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/ElementwiseOperations.h"
#include "tests/validation/reference/Permute.h"
#include "arm_compute/runtime/experimental/ClCompositeOperator.h"
#include "tests/validation/reference/Floor.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "tests/validation/CL/UNIT/dynamic_fusion/Utils.h"
using namespace arm_compute::experimental::dynamic_fusion;
using namespace arm_compute::test::validation::utils;
namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(CL)
TEST_SUITE(UNIT)
TEST_SUITE(DYNAMIC_FUSION)
TEST_SUITE(ArbitraryFusion)
TEST_CASE(ElementwiseBroadcasting, framework::DatasetMode::ALL)
{
// Test elementwise broadcasting
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto input_shape = TensorShape(7, 9, 5);
const auto rhs_shape = TensorShape(7, 1, 1);
const auto dst_shape = TensorShape(7, 9, 5);
// Tensor Info
auto input_info = TensorInfo(input_shape, 1, data_type, data_layout);
auto addend_info = TensorInfo(rhs_shape, 1, data_type, data_layout);
auto dst_info = TensorInfo();
ElementwiseDescriptor add_desc{ ArithmeticOperation::ADD };
CLScheduler::get().default_reinit();
const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
OperatorGraph op_graph;
const auto op_input = add_tensor(op_graph, input_info);
const auto op_addend = add_tensor(op_graph, addend_info);
const auto op_dst = add_tensor(op_graph, dst_info);
add_op_elementwise_op(op_graph, add_desc, op_input, op_addend, op_dst);
const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } };
ClWorkload workload;
build(workload, op_graph, workload_ctx);
ClCompositeOperator op;
op.configure(cl_compile_ctx, workload);
// Construct tensors
CLTensor t_input{};
CLTensor t_addend{};
CLTensor t_dst{};
// Init tensors
t_input.allocator()->init(input_info);
t_addend.allocator()->init(addend_info);
t_dst.allocator()->init(dst_info);
// Allocate and fill tensors
t_input.allocator()->allocate();
t_addend.allocator()->allocate();
t_dst.allocator()->allocate();
// Fill
fill<float>(CLAccessor(t_input), 0, library.get());
fill<float>(CLAccessor(t_addend), 1, library.get());
// Pack tensors
OpTensorBinding bp_tensors({ { op_input, &t_input },
{ op_addend, &t_addend },
{ op_dst, &t_dst }
});
// Populate prepare and run pack-maps (including allocating aux tensors)
ClAuxTensorData aux_tensor_data{};
TensorPackMap prepare_pack_map{};
TensorPackMap run_pack_map{};
bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors);
op.prepare(prepare_pack_map);
op.run(run_pack_map);
// Create reference
SimpleTensor<float> ref_input{ input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_addend{ rhs_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
// Fill reference
fill<float>(ref_input, 0, library.get());
fill<float>(ref_addend, 1, library.get());
auto ref_input_nchw = reference::permute(ref_input, PermutationVector(1U, 2U, 0U));
auto ref_addend_nchw = reference::permute(ref_addend, PermutationVector(1U, 2U, 0U));
auto dst_shape_nchw = dst_shape;
permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U));
auto ref_t_dst_nchw = reference::arithmetic_operation(
ArithmeticOperation::ADD,
ref_input_nchw,
ref_addend_nchw,
data_type,
ConvertPolicy{});
const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U));
RelativeTolerance<float> tolerance_f32(0.001f);
validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32);
}
TEST_CASE(DivFloor, framework::DatasetMode::ALL)
{
// x = floor(div(input, input2))
const auto data_type = DataType::F32;
const auto eltwise_info = ElementwiseDescriptor{ ArithmeticOperation::DIV };
// Tensor Values
const auto width = 7U;
const auto height = 6U;
// Shapes
const auto input1_shape = TensorShape(width, height);
const auto input2_shape = TensorShape(width, height);
const auto dst_shape = TensorShape(width, height);
// Create reference
SimpleTensor<float> ref_src_nhwc{ input1_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_src2_nhwc{ input2_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
// Fill reference
fill<float>(ref_src_nhwc, 0, library.get());
fill<float>(ref_src2_nhwc, 1, library.get());
auto ref_src = reference::permute(ref_src_nhwc, PermutationVector(1U, 2U, 0U));
auto ref_src2 = reference::permute(ref_src2_nhwc, PermutationVector(1U, 2U, 0U));
TensorShape dst_shape_nchw{ dst_shape };
permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U));
const auto ref_dst_nchw = reference::floor_layer(reference::arithmetic_operation(
ArithmeticOperation::DIV,
ref_src,
ref_src2,
data_type,
ConvertPolicy::SATURATE));
const auto ref_t_dst = reference::permute(ref_dst_nchw, PermutationVector(2U, 0U, 1U));
// Tensor Info
auto input1_info = TensorInfo(input1_shape, 1, data_type, DataLayout::NHWC);
auto input2_info = TensorInfo(input2_shape, 1, data_type, DataLayout::NHWC);
auto dst_info = TensorInfo();
auto acc_info = TensorInfo(); // Intermediate tensor for division
// Initialise Scheduler
CLScheduler::get().default_reinit();
const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
OperatorGraph op_graph;
// add tensors
auto op_input1 = add_tensor(op_graph, input1_info);
auto op_input2 = add_tensor(op_graph, input2_info);
auto op_acc = add_tensor(op_graph, acc_info);
auto op_dst = add_tensor(op_graph, dst_info);
add_op_elementwise_op(op_graph, eltwise_info, op_input1, op_input2, op_acc);
add_op_floor(op_graph, FloorDescriptor(), op_acc, op_dst);
const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } };
ClWorkload workload;
build(workload, op_graph, workload_ctx);
ClCompositeOperator op;
op.configure(cl_compile_ctx, workload);
// Configure and add tensors.
CLTensor t_input1{};
CLTensor t_input2{};
CLTensor t_dst{};
// Init Tensors
t_input1.allocator()->init(input1_info);
t_input2.allocator()->init(input2_info);
t_dst.allocator()->init(dst_info);
// Allocate and fill tensors
t_input1.allocator()->allocate();
t_input2.allocator()->allocate();
t_dst.allocator()->allocate();
fill<float>(CLAccessor(t_input1), 0, library.get());
fill<float>(CLAccessor(t_input2), 1, library.get());
// "Pack" tensors
OpTensorBinding bp_tensors({ { op_input1, &t_input1 },
{ op_input2, &t_input2 },
{ op_dst, &t_dst }
});
// Populate prepare and run pack-maps (including allocating aux tensors)
ClAuxTensorData aux_tensor_data{};
TensorPackMap prepare_pack_map{};
TensorPackMap run_pack_map{};
bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors);
op.prepare(prepare_pack_map);
op.run(run_pack_map);
RelativeTolerance<float> tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
validate(CLAccessor(t_dst), ref_dst_nchw, tolerance_f32);
}
TEST_CASE(Dconv2dAddDiv, framework::DatasetMode::ALL)
{
// output = div(divend, add(addend, conv2d1x1(direct_conv)(input, weights, bias)))
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto input_shape = TensorShape(384, 12, 12);
const auto weight_shape = TensorShape(384, 1, 1, 16);
const auto dst_shape = TensorShape(16, 12, 12);
// Tensor Info
auto input_info = TensorInfo(input_shape, 1, data_type, data_layout);
auto weight_info = TensorInfo(weight_shape, 1, data_type, data_layout);
auto addend_info = TensorInfo(dst_shape, 1, data_type, data_layout);
auto divend_info = TensorInfo(dst_shape, 1, data_type, data_layout);
auto acc_info = TensorInfo(); // Intermediate tensor for conv
auto acc_1_info = TensorInfo();
auto dst_info = TensorInfo();
Conv2dDescriptor conv2d_desc{};
ElementwiseDescriptor add_desc{ ArithmeticOperation::ADD };
ElementwiseDescriptor div_desc{ ArithmeticOperation::DIV };
CLScheduler::get().default_reinit();
const auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
OperatorGraph op_graph;
const auto op_input = add_tensor(op_graph, input_info);
const auto op_weight = add_tensor(op_graph, weight_info);
const auto op_addend = add_tensor(op_graph, addend_info);
const auto op_divend = add_tensor(op_graph, divend_info);
const auto op_acc = add_tensor(op_graph, acc_info); // temp accumulator; TensorInfo to be inferred
const auto op_acc_1 = add_tensor(op_graph, acc_1_info); // temp accumulator; TensorInfo to be inferred
const auto op_dst = add_tensor(op_graph, dst_info);
auto conv2d = add_op_conv2d(op_graph, conv2d_desc, op_input, op_weight, op_acc);
force_conv2d_method(op_graph, conv2d, ConvolutionMethod::DIRECT);
add_op_elementwise_op(op_graph, add_desc, op_acc, op_addend, op_acc_1);
add_op_elementwise_op(op_graph, div_desc, op_acc_1, op_divend, op_dst);
const ClWorkloadContext workload_ctx{ GpuInfo{ CLScheduler::get().target() } };
ClWorkload workload;
build(workload, op_graph, workload_ctx);
ClCompositeOperator op;
op.configure(cl_compile_ctx, workload);
// Construct tensors
CLTensor t_input{};
CLTensor t_weight{};
CLTensor t_addend{};
CLTensor t_divend{};
CLTensor t_dst{};
// Init tensors
t_input.allocator()->init(input_info);
t_weight.allocator()->init(weight_info);
t_divend.allocator()->init(divend_info);
t_addend.allocator()->init(addend_info);
t_dst.allocator()->init(dst_info);
// Allocate and fill tensors
t_input.allocator()->allocate();
t_weight.allocator()->allocate();
t_divend.allocator()->allocate();
t_addend.allocator()->allocate();
t_dst.allocator()->allocate();
// Fill
fill<float>(CLAccessor(t_input), 0, library.get());
fill<float>(CLAccessor(t_weight), 1, library.get());
fill<float>(CLAccessor(t_addend), 2, library.get());
fill<float>(CLAccessor(t_divend), 3, library.get());
// Pack tensors
OpTensorBinding bp_tensors({ { op_input, &t_input },
{ op_weight, &t_weight },
{ op_addend, &t_addend },
{ op_divend, &t_divend },
{ op_dst, &t_dst }
});
// Populate prepare and run pack-maps (including allocating aux tensors)
ClAuxTensorData aux_tensor_data{};
TensorPackMap prepare_pack_map{};
TensorPackMap run_pack_map{};
bind_tensors(aux_tensor_data, prepare_pack_map, run_pack_map, workload, bp_tensors);
op.prepare(prepare_pack_map);
op.run(run_pack_map);
// Create reference
SimpleTensor<float> ref_input{ input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_weight{ weight_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_bias_placeholder{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_addend{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_divend{ dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
// Fill reference
fill<float>(ref_input, 0, library.get());
fill<float>(ref_weight, 1, library.get());
fill<float>(ref_addend, 2, library.get());
fill<float>(ref_divend, 3, library.get());
auto ref_input_nchw = reference::permute(ref_input, PermutationVector(1U, 2U, 0U));
auto ref_weight_nchw = reference::permute(ref_weight, PermutationVector(1U, 2U, 0U));
auto ref_bias_placeholder_nchw = reference::permute(ref_bias_placeholder, PermutationVector(1U, 2U, 0U));
auto ref_addend_nchw = reference::permute(ref_addend, PermutationVector(1U, 2U, 0U));
auto ref_divend_nchw = reference::permute(ref_divend, PermutationVector(1U, 2U, 0U));
auto dst_shape_nchw = dst_shape;
permute(dst_shape_nchw, PermutationVector(1U, 2U, 0U));
PadStrideInfo legacy_pad_stride(conv2d_desc.stride.x(), conv2d_desc.stride.y(), conv2d_desc.pad.left, conv2d_desc.pad.right, conv2d_desc.pad.top, conv2d_desc.pad.bottom, DimensionRoundingType{});
auto ref_acc_nchw = reference::arithmetic_operation(
ArithmeticOperation::ADD,
ref_addend_nchw,
reference::convolution_layer(ref_input_nchw, ref_weight_nchw, ref_bias_placeholder_nchw, dst_shape_nchw, legacy_pad_stride, conv2d_desc.dilation),
data_type,
ConvertPolicy{});
auto ref_t_dst_nchw = reference::arithmetic_operation(
ArithmeticOperation::DIV,
ref_acc_nchw,
ref_divend_nchw,
data_type,
ConvertPolicy{});
const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U));
RelativeTolerance<float> tolerance_f32(0.001f);
validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32);
}
TEST_SUITE_END() // ArbitraryFusion
TEST_SUITE_END() // DYNAMIC_FUSION
TEST_SUITE_END() // UNIT
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */