Decouple CpuActivationKernel

1- Data types were already decoupled. This commit arrange the folder struct of the activation kernel.
2- Refactor NEON CpuActivationKernel for floating-point cases.

Resolves COMPMID-4636
Change-Id: Ia4527244c84260dce1dd1d4bd4a9e3cfe2486d85
Signed-off-by: Dana Zlotnik <dana.zlotnik@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6739
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Giorgio Arena <giorgio.arena@arm.com>
diff --git a/src/cpu/kernels/activation/generic/neon/qasymm8.cpp b/src/cpu/kernels/activation/generic/neon/qasymm8.cpp
new file mode 100644
index 0000000..62e329e
--- /dev/null
+++ b/src/cpu/kernels/activation/generic/neon/qasymm8.cpp
@@ -0,0 +1,262 @@
+/*
+ * Copyright (c) 2020-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/NEMath.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include <arm_neon.h>
+#include <cmath>
+#include <cstddef>
+
+namespace arm_compute
+{
+namespace cpu
+{
+void neon_qasymm8_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window)
+{
+    constexpr int                                 window_step_x  = 16;
+    const auto                                    window_start_x = static_cast<int>(window.x().start());
+    const auto                                    window_end_x   = static_cast<int>(window.x().end());
+    const ActivationLayerInfo::ActivationFunction act            = act_info.activation();
+
+    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
+    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator input(src, win_collapsed);
+    Iterator output(dst, win_collapsed);
+
+    const UniformQuantizationInfo qi_in    = src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo qi_out   = dst->info()->quantization_info().uniform();
+    const qasymm8x16_t            va       = vdupq_n_u8(quantize_qasymm8(act_info.a(), qi_in));
+    const qasymm8x16_t            vb       = vdupq_n_u8(quantize_qasymm8(act_info.b(), qi_in));
+    const qasymm8_t               a        = quantize_qasymm8(act_info.a(), qi_in);
+    const qasymm8_t               b        = quantize_qasymm8(act_info.b(), qi_in);
+    const qasymm8_t               const_0  = quantize_qasymm8(0.f, qi_in);
+    const qasymm8x16_t            vconst_0 = vdupq_n_u8(const_0);
+    const auto                    vconst_1 = vdupq_n_f32(1.f);
+#ifndef __aarch64__
+    const auto vconst_0_f32 = vdupq_n_f32(0);
+#endif // __aarch64__
+    const float32x4_t va_f32          = vdupq_n_f32(act_info.a());
+    const float32x4_t vb_f32          = vdupq_n_f32(act_info.b());
+    const float       a_f32           = act_info.a();
+    const float       b_f32           = act_info.b();
+    const auto        const_6_f32     = vdupq_n_f32(6.f);
+    const auto        const_0_f32     = vdupq_n_f32(0.f);
+    const auto        const_3_f32     = vdupq_n_f32(3.f);
+    const auto        const_inv_6_f32 = vdupq_n_f32(0.166666667f);
+
+    // Initialise scale/offset for re-quantization
+    float       s  = qi_in.scale / qi_out.scale;
+    float       o  = -qi_in.offset * s + qi_out.offset;
+    float32x4_t vs = vdupq_n_f32(s);
+    float32x4_t vo = vdupq_n_f32(o);
+
+    execute_window_loop(win_collapsed, [&](const Coordinates &)
+    {
+        const auto input_ptr  = reinterpret_cast<const qasymm8_t *>(input.ptr());
+        const auto output_ptr = reinterpret_cast<qasymm8_t *>(output.ptr());
+
+        wrapper::traits::neon_bitvector_t<qasymm8_t, wrapper::traits::BitWidth::W128> tmp;
+
+        // Compute S elements per iteration
+        int x = window_start_x;
+        for(; x <= (window_end_x - window_step_x); x += window_step_x)
+        {
+            const auto vin = wrapper::vloadq(input_ptr + x);
+            if(act == ActivationLayerInfo::ActivationFunction::RELU)
+            {
+                // Perform activation
+                tmp = vmaxq_u8(vconst_0, vin);
+                // Re-quantize to new output space
+                tmp = vmlaq_qasymm8(tmp, vs, vo);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
+            {
+                // Perform activation
+                tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin));
+                // Re-quantize to new output space
+                tmp = vmlaq_qasymm8(tmp, vs, vo);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
+            {
+                // Perform activation
+                tmp = vminq_u8(va, vmaxq_u8(vb, vin));
+                // Re-quantize to new output space
+                tmp = vmlaq_qasymm8(tmp, vs, vo);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
+            {
+                // De-quantize
+                const auto vin_deq = vdequantize(vin, qi_in);
+                // Perform activation
+                const float32x4x4_t tmp_dep =
+                {
+                    {
+                        wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
+                        wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
+                        wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))),
+                        wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))),
+                    }
+                };
+                // Re-quantize to new output space
+                tmp = vquantize(tmp_dep, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::TANH)
+            {
+                // De-quantize
+                const auto vin_deq = vdequantize(vin, qi_in);
+                // Perform activation
+                const float32x4x4_t tmp_dep =
+                {
+                    {
+                        wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
+                        wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
+                        wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
+                        wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
+                    }
+                };
+                // Re-quantize to new output space
+                tmp = vquantize(tmp_dep, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
+            {
+                // De-quantize
+                const auto vin_deq = vdequantize(vin, qi_in);
+                // Perform activation
+                const float32x4x4_t tmp_dep =
+                {
+                    {
+                        wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))),
+                        wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))),
+                        wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))),
+                        wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))),
+                    }
+                };
+                // Re-quantize to new output space
+                tmp = vquantize(tmp_dep, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
+            {
+                const auto vin_deq = vdequantize(vin, qi_in);
+
+#ifdef __aarch64__
+                const uint32x4x4_t pos_mask =
+                {
+                    {
+                        wrapper::vcgtz(vin_deq.val[0]),
+                        wrapper::vcgtz(vin_deq.val[1]),
+                        wrapper::vcgtz(vin_deq.val[2]),
+                        wrapper::vcgtz(vin_deq.val[3]),
+                    }
+                };
+#else  // __aarch64__
+                const uint32x4x4_t pos_mask =
+                {
+                    {
+                        wrapper::vcgt(vin_deq.val[0], vconst_0_f32),
+                        wrapper::vcgt(vin_deq.val[1], vconst_0_f32),
+                        wrapper::vcgt(vin_deq.val[2], vconst_0_f32),
+                        wrapper::vcgt(vin_deq.val[3], vconst_0_f32),
+                    }
+                };
+#endif // __aarch64__
+
+                const float32x4x4_t tmp_dep =
+                {
+                    {
+                        wrapper::vbsl(pos_mask.val[0], vin_deq.val[0], wrapper::vmul(va_f32, vin_deq.val[0])),
+                        wrapper::vbsl(pos_mask.val[1], vin_deq.val[1], wrapper::vmul(va_f32, vin_deq.val[1])),
+                        wrapper::vbsl(pos_mask.val[2], vin_deq.val[2], wrapper::vmul(va_f32, vin_deq.val[2])),
+                        wrapper::vbsl(pos_mask.val[3], vin_deq.val[3], wrapper::vmul(va_f32, vin_deq.val[3])),
+                    }
+                };
+
+                tmp = vquantize(tmp_dep, qi_out);
+            }
+            else
+            {
+                ARM_COMPUTE_ERROR("Unsupported activation function");
+            }
+            wrapper::vstore(output_ptr + x, tmp);
+        }
+
+        // Compute left-over elements
+        for(; x < window_end_x; ++x)
+        {
+            qasymm8_t in  = *(reinterpret_cast<const qasymm8_t *>(input_ptr + x));
+            qasymm8_t tmp = 0;
+            if(act == ActivationLayerInfo::ActivationFunction::RELU)
+            {
+                tmp = std::max(const_0, in);
+                tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
+            {
+                tmp = std::min(a, std::max(const_0, in));
+                tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
+            {
+                tmp = std::min(a, std::max(b, in));
+                tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
+            {
+                float tmp_f = dequantize_qasymm8(in, qi_in);
+                tmp_f       = 1.f / (1.f + std::exp(-tmp_f));
+                tmp         = quantize_qasymm8(tmp_f, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::TANH)
+            {
+                float tmp_f = dequantize_qasymm8(in, qi_in);
+                tmp_f       = a_f32 * std::tanh(b_f32 * tmp_f);
+                tmp         = quantize_qasymm8(tmp_f, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
+            {
+                float tmp_f = dequantize_qasymm8(in, qi_in);
+                tmp_f       = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
+                tmp         = quantize_qasymm8(tmp_f, qi_out);
+            }
+            else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
+            {
+                float tmp_f = dequantize_qasymm8(in, qi_in);
+                tmp_f       = tmp_f > 0 ? tmp_f : tmp_f * a_f32;
+                tmp         = quantize_qasymm8(tmp_f, qi_out);
+            }
+            else
+            {
+                ARM_COMPUTE_ERROR("Unsupported activation function");
+            }
+            *(output_ptr + x) = tmp;
+        }
+    },
+    input, output);
+}
+} // namespace cpu
+} // namespace arm_compute