blob: d0088423987923d8fcd8c236dab245992be10a02 [file] [log] [blame]
/*
* Copyright (c) 2019-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
inline int32x4x4_t load_results_input(const Iterator &mm_result_it, int32_t x)
{
return {{vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 12)}};
}
inline int32x4x4_t load(const int32_t *ptr, int32_t x)
{
return {{vld1q_s32(ptr + x + 0), vld1q_s32(ptr + x + 4), vld1q_s32(ptr + x + 8), vld1q_s32(ptr + x + 12)}};
}
inline int32x4x4_t add_s32(int32x4x4_t a, int32x4_t b)
{
return {{vaddq_s32(a.val[0], b), vaddq_s32(a.val[1], b), vaddq_s32(a.val[2], b), vaddq_s32(a.val[3], b)}};
}
inline int32x4x4_t add_s32(int32x4x4_t a, int32x4x4_t b)
{
return {{vaddq_s32(a.val[0], b.val[0]), vaddq_s32(a.val[1], b.val[1]), vaddq_s32(a.val[2], b.val[2]),
vaddq_s32(a.val[3], b.val[3])}};
}
inline int32x4x4_t mul_s32(int32x4x4_t &a, int32_t mul_scalar)
{
return {{vmulq_n_s32(a.val[0], mul_scalar), vmulq_n_s32(a.val[1], mul_scalar), vmulq_n_s32(a.val[2], mul_scalar),
vmulq_n_s32(a.val[3], mul_scalar)}};
}
inline int32x4x4_t mul_s32(int32x4x4_t &a, const int32_t *multilpier)
{
return {{vmulq_s32(a.val[0], vld1q_s32(multilpier)), vmulq_s32(a.val[1], vld1q_s32(multilpier + 4)),
vmulq_s32(a.val[2], vld1q_s32(multilpier + 8)), vmulq_s32(a.val[3], vld1q_s32(multilpier + 12))}};
}
inline int32x4x4_t get_a_offset(const int32_t *vector_sum_col_ptr, int32_t a_offset, int32_t x)
{
int32x4x4_t a_offset_term_s32 = load(vector_sum_col_ptr, x);
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
return a_offset_term_s32;
}
inline int32x4_t get_b_offset(const int32_t *vector_sum_row_ptr, int32_t b_offset)
{
int32x4_t b_offset_term_s32 = vld1q_dup_s32(vector_sum_row_ptr);
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);
return b_offset_term_s32;
}
inline int32x4x4_t get_k_offset(int32_t k_offset)
{
return {{vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}};
}
inline uint8x16_t finalize_quantization_floating_point(
int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8, bool is_bounded_relu)
{
const static int32x4_t zero_s32 = vdupq_n_s32(0);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
// Saturate negative values
in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
// Convert S16 to U8
uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
if (is_bounded_relu)
{
out_u8 = vmaxq_u8(out_u8, min_u8);
out_u8 = vminq_u8(out_u8, max_u8);
}
return out_u8;
}
inline int8x16_t finalize_quantization_floating_point(
int32x4x4_t &in_s32, int32x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
{
const static int32x4_t zero_s32 = vdupq_n_s32(0);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
// Saturate negative values
in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
// Convert S16 to S8
int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
if (is_bounded_relu)
{
out_s8 = vmaxq_s8(out_s8, min_s8);
out_s8 = vminq_s8(out_s8, max_s8);
}
return out_s8;
}
inline int8x16_t finalize_quantization_floating_point(
int32x4x4_t &in_s32, int32x4x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
{
const static int32x4_t zero_s32 = vdupq_n_s32(0);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], vnegq_s32(result_shift_s32.val[0]));
in_s32.val[1] = vshlq_s32(in_s32.val[1], vnegq_s32(result_shift_s32.val[1]));
in_s32.val[2] = vshlq_s32(in_s32.val[2], vnegq_s32(result_shift_s32.val[2]));
in_s32.val[3] = vshlq_s32(in_s32.val[3], vnegq_s32(result_shift_s32.val[3]));
// Saturate negative values
in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
// Convert S16 to S8
int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
if (is_bounded_relu)
{
out_s8 = vmaxq_s8(out_s8, min_s8);
out_s8 = vminq_s8(out_s8, max_s8);
}
return out_s8;
}
template <typename T>
struct VectorTyper
{
using stype = T;
using vtype = typename wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128>;
};
inline Window get_win_vector_sum(const Window &window)
{
Window win_vector_sum(window);
win_vector_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
return win_vector_sum;
}
inline Iterator get_vector_sum_col_it(const Window &window, const ITensor *vector_sum_col)
{
Iterator vector_sum_col_it(vector_sum_col, get_win_vector_sum(window));
return vector_sum_col_it;
}
inline Iterator get_vector_sum_row_it(const Window &window, const ITensor *vector_sum_row)
{
Window win_vector_sum_row = get_win_vector_sum(window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
return vector_sum_row_it;
}
inline Iterator get_bias_it(const Window &window, const ITensor *bias)
{
Window win_bias(window);
win_bias.set(Window::DimY, Window::Dimension(0, 1, 1));
win_bias.set(Window::DimZ, Window::Dimension(0, 1, 1));
Iterator bias_it(bias, win_bias);
return bias_it;
}
template <typename VT>
inline void run_offset_contribution_output_stage_window(const int32_t *vector_sum_col_ptr,
const int32_t *vector_sum_row_ptr,
const int32_t *bias_ptr,
Iterator mm_result_it,
Iterator out_it,
const int32x4_t result_offset_s32,
const int32x4_t result_shift_s32,
typename VT::vtype min_vec,
typename VT::vtype max_vec,
int32_t a_offset,
int32_t b_offset,
int32_t k_offset,
int32_t multiplier,
int32_t shift,
int32_t offset,
int32_t min_bound,
int32_t max_bound,
int window_step_x,
int window_start_x,
int window_end_x,
bool has_a_offset,
bool has_b_offset,
bool has_bias,
bool is_bounded_relu,
bool is_fixed_point)
{
int32x4x4_t offset_term_s32 = {0, 0, 0, 0};
if (!is_fixed_point)
{
// Combine quantization offset with other offsets.
offset_term_s32 = add_s32(offset_term_s32, result_offset_s32);
}
if (has_a_offset && has_b_offset)
{
offset_term_s32 = add_s32(offset_term_s32, get_k_offset(k_offset));
}
if (has_b_offset)
{
offset_term_s32 = add_s32(offset_term_s32, get_b_offset(vector_sum_row_ptr, b_offset));
}
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
if (has_a_offset)
{
in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
}
if (has_bias)
{
in_s32 = add_s32(in_s32, load(bias_ptr, x));
}
if (!is_fixed_point || has_b_offset)
{
in_s32 = add_s32(in_s32, offset_term_s32);
}
if (!is_fixed_point)
{
in_s32 = mul_s32(in_s32, multiplier);
}
if (is_fixed_point)
{
wrapper::vstore(
reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
finalize_quantization(in_s32, multiplier, shift, result_offset_s32, min_vec, max_vec, is_bounded_relu));
}
else
{
wrapper::vstore(
reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
finalize_quantization_floating_point(in_s32, result_shift_s32, min_vec, max_vec, is_bounded_relu));
}
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t in_value =
*(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
if (has_a_offset)
{
in_value += (*(vector_sum_col_ptr + x) * a_offset);
}
if (has_bias)
{
in_value += *(bias_ptr + x);
}
if (is_fixed_point)
{
// Finalize and store the result
*reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) =
finalize_quantization(in_value, multiplier, shift, offset, static_cast<typename VT::stype>(min_bound),
static_cast<typename VT::stype>(max_bound), is_bounded_relu);
}
else
{
// Finalize quantization
in_value = (in_value * multiplier) >> shift;
// Bound and store the result
if (is_bounded_relu)
{
in_value = static_cast<typename VT::stype>(
std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
}
*reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) =
static_cast<typename VT::stype>(std::max<int32_t>(
static_cast<int32_t>(std::numeric_limits<typename VT::stype>::lowest()),
std::min<int32_t>(static_cast<int32_t>(std::numeric_limits<typename VT::stype>::max()), in_value)));
}
}
}
inline void run_offset_contribution_output_stage_window_symm(const int32_t *vector_sum_col_ptr,
const int32_t *bias_ptr,
Iterator mm_result_it,
Iterator out_it,
const int32_t *result_multipliers,
const int32_t *result_shifts,
const int32x4_t result_offset,
int8x16_t min_s8,
int8x16_t max_s8,
int32_t a_offset,
int32_t offset,
int32_t min_bound,
int32_t max_bound,
int window_step_x,
int window_start_x,
int window_end_x,
bool has_a_offset,
bool has_bias,
bool is_bounded_relu,
bool is_fixed_point)
{
int32x4x4_t offset_term_s32 = {0, 0, 0, 0};
if (!is_fixed_point)
{
// Combine quantization offset with other offsets.
offset_term_s32 = add_s32(offset_term_s32, result_offset);
}
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
if (has_a_offset)
{
in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
}
if (has_bias)
{
in_s32 = add_s32(in_s32, load(bias_ptr, x));
}
if (!is_fixed_point)
{
in_s32 = add_s32(in_s32, offset_term_s32);
in_s32 = mul_s32(in_s32, result_multipliers + x);
}
if (is_fixed_point)
{
vst1q_s8(reinterpret_cast<int8_t *>(out_it.ptr() + x),
finalize_quantization_symm(in_s32, load(result_multipliers, x), load(result_shifts, x),
result_offset, min_s8, max_s8, is_bounded_relu));
}
else
{
vst1q_s8(
reinterpret_cast<int8_t *>(out_it.ptr() + x),
finalize_quantization_floating_point(in_s32, load(result_shifts, x), min_s8, max_s8, is_bounded_relu));
}
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int32_t in_value =
*(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
if (has_a_offset)
{
in_value += (*(vector_sum_col_ptr + x) * a_offset);
}
if (has_bias)
{
in_value += *(bias_ptr + x);
}
if (is_fixed_point)
{
// Finalize and store the result
*(out_it.ptr() + x) =
finalize_quantization(in_value, result_multipliers[x], result_shifts[x], offset,
static_cast<int8_t>(min_bound), static_cast<int8_t>(max_bound), is_bounded_relu);
}
else
{
// Finalize quantization
in_value = (in_value * result_multipliers[x]) >> (-result_shifts[x]);
// Bound and store the result
if (is_bounded_relu)
{
in_value = static_cast<int8_t>(std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
}
*(out_it.ptr() + x) = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
}
}
}
template <typename T>
void run_offset_contribution_output_stage(const Window &window,
const ITensor *mm_result,
const ITensor *vector_sum_col,
const ITensor *vector_sum_row,
const ITensor *bias,
ITensor *output,
int32_t a_offset,
int32_t b_offset,
int32_t k_offset,
bool is_vector_sum_col_batched,
GEMMLowpOutputStageInfo output_stage,
bool is_gemm3d,
bool is_bounded_relu,
bool is_fixed_point)
{
// Semantics of XYZW Explained for each tensor
//
// | Tensor | XYZW when is_gemm3d == false | XYZW when is_gemm3d == true |
// -------------------------------------------------------------------------------------------------------------------
// | mm_result | x -> width, y -> height, z -> batch | x -> width, y -> height, z -> depth, w -> batch |
// | collapsed window | x -> width, y -> height, z -> batch | x -> width, y -> height, z -> depth * batch |
// | vector_sum_row | x -> height, y -> batch | x -> height * depth, y -> batch |
// | Vector_sum_col | x -> width, y -> batch | x -> width, y -> batch |
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
using Typer = VectorTyper<T>;
const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
const int32_t multiplier = output_stage.gemmlowp_multiplier;
const int32_t shift = output_stage.gemmlowp_shift;
const int32_t offset = output_stage.gemmlowp_offset;
const int32_t min_bound = output_stage.gemmlowp_min_bound;
const int32_t max_bound = output_stage.gemmlowp_max_bound;
const int32x4_t result_offset_s32 = vdupq_n_s32(offset);
const int32x4_t result_shift_s32 = vdupq_n_s32(is_fixed_point ? shift : -shift);
const auto min_vec = wrapper::vdup_n(static_cast<T>(min_bound), ExactTagType{});
const auto max_vec = wrapper::vdup_n(static_cast<T>(max_bound), ExactTagType{});
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
Iterator mm_result_it(mm_result, win);
Iterator out_it(output, win);
if ((a_offset != 0) && (b_offset != 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
// Offset in case vector_sum_col is batched in y dimension
const int vector_sum_col_stride_batch =
is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
const auto vector_sum_row_ptr =
reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<Typer>(
vector_sum_col_ptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()),
mm_result_it, out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset,
k_offset, multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x,
window_end_x, true, true, true, is_bounded_relu, is_fixed_point);
},
vector_sum_col_it, vector_sum_row_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
const auto vector_sum_row_ptr =
reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<Typer>(
vector_sum_col_ptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it, result_offset_s32,
result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset,
min_bound, max_bound, window_step_x, window_start_x, window_end_x, true, true, false,
is_bounded_relu, is_fixed_point);
},
vector_sum_col_it, vector_sum_row_it, mm_result_it, out_it);
}
}
else if ((a_offset == 0) && (b_offset != 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_row_ptr =
reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<Typer>(
nullptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset,
multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x,
false, true, true, is_bounded_relu, is_fixed_point);
},
vector_sum_row_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_row_ptr =
reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<Typer>(
nullptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32,
min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
window_step_x, window_start_x, window_end_x, false, true, false, is_bounded_relu,
is_fixed_point);
},
vector_sum_row_it, mm_result_it, out_it);
}
}
else if ((a_offset != 0) && (b_offset == 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
// Offset in case vector_sum_col is batched in y dimension
const int vector_sum_col_stride_batch =
is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
run_offset_contribution_output_stage_window<Typer>(
vector_sum_col_ptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset,
multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x,
true, false, true, is_bounded_relu, is_fixed_point);
},
vector_sum_col_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
run_offset_contribution_output_stage_window<Typer>(
vector_sum_col_ptr, nullptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32,
min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
window_step_x, window_start_x, window_end_x, true, false, false, is_bounded_relu,
is_fixed_point);
},
vector_sum_col_it, mm_result_it, out_it);
}
}
else
{
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &)
{
run_offset_contribution_output_stage_window<Typer>(
nullptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset, multiplier,
shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x, false, false,
true, is_bounded_relu, is_fixed_point);
},
bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &)
{
run_offset_contribution_output_stage_window<Typer>(
nullptr, nullptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32, min_vec,
max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
window_step_x, window_start_x, window_end_x, false, false, false, is_bounded_relu,
is_fixed_point);
},
mm_result_it, out_it);
}
return;
}
}
void run_offset_contribution_output_stage_symm(const Window &window,
const ITensor *mm_result,
const ITensor *vector_sum_col,
const ITensor *vector_sum_row,
const ITensor *bias,
ITensor *output,
int32_t a_offset,
int32_t b_offset,
int32_t k_offset,
bool is_vector_sum_col_batched,
GEMMLowpOutputStageInfo output_stage,
bool is_gemm3d,
bool is_bounded_relu,
bool is_fixed_point)
{
ARM_COMPUTE_UNUSED(vector_sum_row, b_offset, k_offset);
const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
const int32_t offset = output_stage.gemmlowp_offset;
const int32_t min_bound = output_stage.gemmlowp_min_bound;
const int32_t max_bound = output_stage.gemmlowp_max_bound;
const int32_t *result_multipliers = output_stage.gemmlowp_multipliers.data();
const int32_t *result_shifts = output_stage.gemmlowp_shifts.data();
const int32x4_t result_offset_s32 = vdupq_n_s32(offset);
const int8x16_t min_s8 = vdupq_n_s8(static_cast<int8_t>(min_bound));
const int8x16_t max_s8 = vdupq_n_s8(static_cast<int8_t>(max_bound));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
Iterator mm_result_it(mm_result, win);
Iterator out_it(output, win);
if (a_offset != 0)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
// Offset in case vector_sum_col is batched in y dimension
const int vector_sum_col_stride_batch =
is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
run_offset_contribution_output_stage_window_symm(
vector_sum_col_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_multipliers, result_shifts, result_offset_s32, min_s8, max_s8, a_offset, offset,
min_bound, max_bound, window_step_x, window_start_x, window_end_x, true, true, is_bounded_relu,
is_fixed_point);
},
vector_sum_col_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
run_offset_contribution_output_stage_window_symm(
vector_sum_col_ptr, nullptr, mm_result_it, out_it, result_multipliers, result_shifts,
result_offset_s32, min_s8, max_s8, a_offset, offset, min_bound, max_bound, window_step_x,
window_start_x, window_end_x, true, false, is_bounded_relu, is_fixed_point);
},
vector_sum_col_it, mm_result_it, out_it);
}
}
else
{
if (bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(
collapsed_window,
[&](const Coordinates &)
{
run_offset_contribution_output_stage_window_symm(
nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_multipliers, result_shifts, result_offset_s32, min_s8, max_s8, a_offset, offset,
min_bound, max_bound, window_step_x, window_start_x, window_end_x, false, true, is_bounded_relu,
is_fixed_point);
},
bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(
collapsed_window,
[&](const Coordinates &)
{
run_offset_contribution_output_stage_window_symm(
nullptr, nullptr, mm_result_it, out_it, result_multipliers, result_shifts, result_offset_s32,
min_s8, max_s8, a_offset, offset, min_bound, max_bound, window_step_x, window_start_x,
window_end_x, false, false, is_bounded_relu, is_fixed_point);
},
mm_result_it, out_it);
}
return;
}
}
Status validate_arguments(const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
const ITensorInfo *output,
int32_t a_offset,
int32_t b_offset,
GEMMLowpOutputStageInfo output_stage)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
if (output->data_type() != DataType::QASYMM8)
{
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) > 1 && output_stage.gemmlowp_multipliers.size() > 1 &&
b_offset != 0);
}
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN &&
output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
if (bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
}
// If a_offset == 0, vector_sum_col can be a nullptr
if (a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->num_dimensions() > 2);
}
// If b_offset == 0, vector_sum_row can be a nullptr
if (b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d =
mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) !=
(mm_result->dimension(1) * mm_result->dimension(2)));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
TensorShape output_shape = output->tensor_shape();
if (output_shape.num_dimensions() > 1)
{
const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
output_shape.collapse_from(output_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
"mm_result tensor must have the same number of batches of output tensor");
if (a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 &&
vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of "
"vector_sum_row_shape or the number of batches must be set to 1");
}
}
// Check Tensor Rank of vector_sum_row
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_row->num_dimensions() > 3);
}
if (output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
}
return Status{};
}
} // namespace
void CpuGemmLowpOffsetContributionOutputStageKernel::configure(const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
ITensorInfo *dst,
int32_t k,
int32_t a_offset,
int32_t b_offset,
GEMMLowpOutputStageInfo output_stage)
{
ARM_COMPUTE_UNUSED(vector_sum_row, bias);
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, dst);
ARM_COMPUTE_ERROR_THROW_ON(
validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, dst, a_offset, b_offset, output_stage));
_a_offset = a_offset;
_b_offset = b_offset;
_k_offset = a_offset * b_offset * k;
_output_stage = output_stage;
// If a_offset == 0, vector_sum_col can be a nullptr
if (a_offset != 0)
{
// Check if vector_sum_col_shape should be slidden or not
// Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
_is_vector_sum_col_batched = vector_sum_col->tensor_shape().num_dimensions() > 1;
}
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*dst, mm_result->clone()->set_data_type(DataType::QASYMM8));
// Configure kernel window
Window win = calculate_max_window(*mm_result, Steps());
// Note: This kernel performs 16 elements per iteration.
// However, since we use a left-over for loop, we cannot have any read or write out of memory
// For this reason num_elems_processed_per_iteration is 1 and so update_window_and_padding() can be skipped
ICpuKernel::configure(win);
}
Status CpuGemmLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
const ITensorInfo *output,
int32_t a_offset,
int32_t b_offset,
GEMMLowpOutputStageInfo output_stage)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
ARM_COMPUTE_RETURN_ON_ERROR(
validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
return Status{};
}
void CpuGemmLowpOffsetContributionOutputStageKernel::run_op(ITensorPack &tensors,
const Window &window,
const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto mm_result = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_2);
auto bias = tensors.get_const_tensor(TensorType::ACL_SRC_3);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(dst->info()->data_type());
int32_t type_min_int = type_min.get<int32_t>();
int32_t type_max_int = type_max.get<int32_t>();
const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->info()->num_dimensions() > 1 &&
mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
const bool is_bounded_relu =
!(_output_stage.gemmlowp_min_bound <= type_min_int && _output_stage.gemmlowp_max_bound >= type_max_int);
// Check if we need to perform fixed point requantization
const bool is_fixed_point = _output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN;
// Check if symmetric per-channel execution
const bool is_signed = dst->info()->data_type() == DataType::QASYMM8_SIGNED;
// Check if symmetric per-channel execution
const bool is_symm = _output_stage.is_quantized_per_channel;
if (is_symm)
{
run_offset_contribution_output_stage_symm(window, mm_result, vector_sum_col, vector_sum_row, bias, dst,
_a_offset, _b_offset, _k_offset, _is_vector_sum_col_batched,
_output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
}
else
{
if (is_signed)
{
run_offset_contribution_output_stage<int8_t>(
window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, _k_offset,
_is_vector_sum_col_batched, _output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
}
else
{
run_offset_contribution_output_stage<uint8_t>(
window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, _k_offset,
_is_vector_sum_col_batched, _output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
}
}
}
const char *CpuGemmLowpOffsetContributionOutputStageKernel::name() const
{
return "CpuGemmLowpOffsetContributionOutputStageKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute