blob: 11cac2607178dd57163144f3f86fa00baff672fa [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_NEON_KERNELS_SCALE_LIST_H
#define SRC_CORE_NEON_KERNELS_SCALE_LIST_H
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/common/Validate.h"
#include "src/core/helpers/ScaleHelpers.h"
#include "src/core/utils/ScaleUtils.h"
#include "support/Rounding.h"
namespace arm_compute
{
namespace cpu
{
#define DECLARE_SCALE_KERNEL(func_name) \
void func_name(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, \
InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, \
bool align_corners, const Window &window)
DECLARE_SCALE_KERNEL(qasymm8_neon_scale);
DECLARE_SCALE_KERNEL(qasymm8_signed_neon_scale);
#undef DECLARE_SCALE_KERNEL
template <typename T>
void nearest_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, float sampling_offset,
bool align_corners, const Window &window)
{
const size_t in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;
const size_t in_stride_w = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom;
const size_t in_stride_wc = in_stride_w * in_stride_c;
const size_t in_dim_h = src->info()->dimension(2);
// Compute the ratio between source height and destination height
const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners);
const auto window_start_x = static_cast<int32_t>(window.x().start());
const auto window_end_x = static_cast<int32_t>(window.x().end());
const int window_step_x = 16 / sizeof(T);
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator out(dst, win);
const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3];
execute_window_loop(win, [&](const Coordinates & id)
{
const int32_t offset = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c;
const auto in_hi = static_cast<int>(align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr));
const int offset_row = in_hi * in_stride_wc;
int32_t x = window_start_x;
const T *in_ptr = reinterpret_cast<const T *>(in_ptr_start + in_stride_bytes_hwc * id[3]);
for(; x <= window_end_x - window_step_x; x += window_step_x)
{
wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x,
wrapper::vloadq(in_ptr + offset + offset_row + x));
}
for(; x < window_end_x; ++x)
{
*(reinterpret_cast<T *>(out.ptr()) + x) = *(in_ptr + offset + offset_row + x);
}
},
out);
}
template <typename T>
void bilinear_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
// Compute the ratio between source height and destination height
const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners);
Iterator out(dst, window);
const int in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;
const int in_dim_w = src->info()->dimension(1);
const int in_dim_h = src->info()->dimension(2);
const int in_stride_wc = in_stride_c * (in_dim_w + src->info()->padding().top + src->info()->padding().bottom);
// Don't increment in Y and Z direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator in(src, win_in);
if(border_mode == BorderMode::CONSTANT)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
using ConstType = T;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
const T const_border_value = static_cast<T>(constant_border_value.get<ConstType>());
execute_window_loop(window, [&](const Coordinates & id)
{
const auto offset = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z())));
const auto dx_val = *reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id.y(), id.z())));
const auto dy_val = *reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id.y(), id.z())));
const int32_t in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset);
const T *in_ptr = reinterpret_cast<const T *>(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc;
const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value;
const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value;
const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value;
const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value;
*reinterpret_cast<T *>(out.ptr()) = static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
},
in, out);
}
else if(border_mode == BorderMode::REPLICATE)
{
execute_window_loop(window, [&](const Coordinates & id)
{
const auto offset = *reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id.y(), id.z())));
const auto dx_val = *reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id.y(), id.z())));
const auto dy_val = *reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id.y(), id.z())));
const int in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset);
auto clamped_w = utility::clamp<int>(offset, 0, in_dim_w - 1);
auto clamped_w1 = utility::clamp<int>(offset + 1, 0, in_dim_w - 1);
auto clamped_h = utility::clamp<int>(in_hi, 0, in_dim_h - 1);
auto clamped_h1 = utility::clamp<int>(in_hi + 1, 0, in_dim_h - 1);
const auto a00 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc);
const auto a01 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc);
const auto a10 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc);
const auto a11 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc);
*reinterpret_cast<T *>(out.ptr()) = static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
},
in, out);
}
else
{
ARM_COMPUTE_ERROR("Not implemented");
}
}
template <typename T>
void common_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
if(policy == InterpolationPolicy::BILINEAR)
{
bilinear_neon_scale<T>(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window);
}
else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR)
{
nearest_neon_scale<T>(src, dst, offsets, sampling_offset, align_corners, window);
}
}
} // namespace cpu
} // namespace arm_compute
#endif /* SRC_CORE_NEON_KERNELS_SCALE_LIST_H */