blob: 6b6735ae581898cbb2bfd2648f559b84ffa3094b [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLFFT1D.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/helpers/fft.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
namespace arm_compute
{
CLFFT1D::CLFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _digit_reversed_input(), _digit_reverse_indices(), _digit_reverse_kernel(), _fft_kernels(), _num_ffts(0)
{
}
void CLFFT1D::configure(const ICLTensor *input, ICLTensor *output, const FFT1DInfo &config)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(CLFFT1D::validate(input->info(), output->info(), config));
// Decompose size to radix factors
const auto supported_radix = CLFFTRadixStageKernel::supported_radix();
const unsigned int N = input->info()->tensor_shape()[config.axis];
const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
// Configure digit reverse
TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
_digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
_memory_group.manage(&_digit_reversed_input);
_digit_reverse_kernel.configure(input, &_digit_reversed_input, &_digit_reverse_indices, config.axis);
// Create and configure FFT kernels
unsigned int Nx = 1;
_num_ffts = decomposed_vector.size();
_fft_kernels = arm_compute::support::cpp14::make_unique<CLFFTRadixStageKernel[]>(_num_ffts);
for(unsigned int i = 0; i < _num_ffts; ++i)
{
const unsigned int radix_for_stage = decomposed_vector.at(i);
FFTRadixStageKernelDescriptor fft_kernel_desc;
fft_kernel_desc.axis = config.axis;
fft_kernel_desc.radix = radix_for_stage;
fft_kernel_desc.Nx = Nx;
fft_kernel_desc.is_first_stage = (i == 0);
_fft_kernels[i].configure(&_digit_reversed_input, i == (_num_ffts - 1) ? output : nullptr, fft_kernel_desc);
Nx *= radix_for_stage;
}
// Allocate tensors
_digit_reversed_input.allocator()->allocate();
_digit_reverse_indices.allocator()->allocate();
// Init digit reverse indices
const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
_digit_reverse_indices.map(CLScheduler::get().queue(), true);
std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
_digit_reverse_indices.unmap(CLScheduler::get().queue());
}
Status CLFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(config.axis != 0);
// Check if FFT is decomposable
const auto supported_radix = CLFFTRadixStageKernel::supported_radix();
const unsigned int N = input->tensor_shape()[config.axis];
const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
void CLFFT1D::run()
{
_memory_group.acquire();
CLScheduler::get().enqueue(_digit_reverse_kernel, false);
for(unsigned int i = 0; i < _num_ffts; ++i)
{
CLScheduler::get().enqueue(_fft_kernels[i], i == (_num_ffts - 1));
}
_memory_group.release();
}
} // namespace arm_compute