blob: a93cb4d1c7bf6c28a745c0abba2a11e921a1994e [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#define VATOMIC_INC16(histogram, win_pos) \
{ \
atomic_inc(histogram + win_pos.s0); \
atomic_inc(histogram + win_pos.s1); \
atomic_inc(histogram + win_pos.s2); \
atomic_inc(histogram + win_pos.s3); \
atomic_inc(histogram + win_pos.s4); \
atomic_inc(histogram + win_pos.s5); \
atomic_inc(histogram + win_pos.s6); \
atomic_inc(histogram + win_pos.s7); \
atomic_inc(histogram + win_pos.s8); \
atomic_inc(histogram + win_pos.s9); \
atomic_inc(histogram + win_pos.sa); \
atomic_inc(histogram + win_pos.sb); \
atomic_inc(histogram + win_pos.sc); \
atomic_inc(histogram + win_pos.sd); \
atomic_inc(histogram + win_pos.se); \
atomic_inc(histogram + win_pos.sf); \
}
/** Calculate the histogram of an 8 bit grayscale image.
*
* Each thread will process 16 pixels and use one local atomic operation per pixel.
* When all work items in a work group are done the resulting local histograms are
* added to the global histogram using global atomics.
*
* @note The input image is represented as a two-dimensional array of type uchar.
* The output is represented as a one-dimensional uint array of length of num_bins
*
* @param[in] input_ptr Pointer to the first source image. Supported data types: U8
* @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
* @param[in] histogram_local The local buffer to hold histogram result in per workgroup. Supported data types: U32
* @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
* @param[out] num_bins The number of bins
* @param[out] offset The start of values to use (inclusive)
* @param[out] range The range of a bin
* @param[out] offrange The maximum value (exclusive)
*/
__kernel void hist_local_kernel(IMAGE_DECLARATION(input),
__local uint *histogram_local,
__global uint *restrict histogram,
uint num_bins,
uint offset,
uint range,
uint offrange)
{
Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
uint local_id_x = get_local_id(0);
uint local_x_size = get_local_size(0);
if(num_bins > local_x_size)
{
for(int i = local_id_x; i < num_bins; i += local_x_size)
{
histogram_local[i] = 0;
}
}
else
{
if(local_id_x <= num_bins)
{
histogram_local[local_id_x] = 0;
}
}
uint16 vals = convert_uint16(vload16(0, input_buffer.ptr));
uint16 win_pos = select(num_bins, ((vals - offset) * num_bins) / range, (vals >= offset && vals < offrange));
barrier(CLK_LOCAL_MEM_FENCE);
VATOMIC_INC16(histogram_local, win_pos);
barrier(CLK_LOCAL_MEM_FENCE);
if(num_bins > local_x_size)
{
for(int i = local_id_x; i < num_bins; i += local_x_size)
{
atomic_add(histogram + i, histogram_local[i]);
}
}
else
{
if(local_id_x <= num_bins)
{
atomic_add(histogram + local_id_x, histogram_local[local_id_x]);
}
}
}
/** Calculate the histogram of an 8 bit grayscale image's border.
*
* Each thread will process one pixel using global atomic.
* When all work items in a work group are done the resulting local histograms are
* added to the global histogram using global atomics.
*
* @note The input image is represented as a two-dimensional array of type uchar.
* The output is represented as a one-dimensional uint array of length of num_bins
*
* @param[in] input_ptr Pointer to the first source image. Supported data types: U8
* @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
* @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
* @param[out] num_bins The number of bins
* @param[out] offset The start of values to use (inclusive)
* @param[out] range The range of a bin
* @param[out] offrange The maximum value (exclusive)
*/
__kernel void hist_border_kernel(IMAGE_DECLARATION(input),
__global uint *restrict histogram,
uint num_bins,
uint offset,
uint range,
uint offrange)
{
Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
uint val = (uint)(*input_buffer.ptr);
uint win_pos = (val >= offset) ? (((val - offset) * num_bins) / range) : 0;
if(val >= offset && (val < offrange))
{
atomic_inc(histogram + win_pos);
}
}
/** Calculate the histogram of an 8 bit grayscale image with bin size of 256 and window size of 1.
*
* Each thread will process 16 pixels and use one local atomic operation per pixel.
* When all work items in a work group are done the resulting local histograms are
* added to the global histogram using global atomics.
*
* @note The input image is represented as a two-dimensional array of type uchar.
* The output is represented as a one-dimensional uint array of 256 elements
*
* @param[in] input_ptr Pointer to the first source image. Supported data types: U8
* @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
* @param[in] histogram_local The local buffer to hold histogram result in per workgroup. Supported data types: U32
* @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
*/
__kernel void hist_local_kernel_fixed(IMAGE_DECLARATION(input),
__local uint *histogram_local,
__global uint *restrict histogram)
{
Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
uint local_index = get_local_id(0);
uint local_x_size = get_local_size(0);
for(int i = local_index; i < 256; i += local_x_size)
{
histogram_local[i] = 0;
}
uint16 vals = convert_uint16(vload16(0, input_buffer.ptr));
barrier(CLK_LOCAL_MEM_FENCE);
atomic_inc(histogram_local + vals.s0);
atomic_inc(histogram_local + vals.s1);
atomic_inc(histogram_local + vals.s2);
atomic_inc(histogram_local + vals.s3);
atomic_inc(histogram_local + vals.s4);
atomic_inc(histogram_local + vals.s5);
atomic_inc(histogram_local + vals.s6);
atomic_inc(histogram_local + vals.s7);
atomic_inc(histogram_local + vals.s8);
atomic_inc(histogram_local + vals.s9);
atomic_inc(histogram_local + vals.sa);
atomic_inc(histogram_local + vals.sb);
atomic_inc(histogram_local + vals.sc);
atomic_inc(histogram_local + vals.sd);
atomic_inc(histogram_local + vals.se);
atomic_inc(histogram_local + vals.sf);
barrier(CLK_LOCAL_MEM_FENCE);
for(int i = local_index; i < 256; i += local_x_size)
{
atomic_add(histogram + i, histogram_local[i]);
}
}
/** Calculate the histogram of an 8 bit grayscale image with bin size as 256 and window size as 1.
*
* Each thread will process one pixel using global atomic.
* When all work items in a work group are done the resulting local histograms are
* added to the global histogram using global atomics.
*
* @note The input image is represented as a two-dimensional array of type uchar.
* The output is represented as a one-dimensional uint array of 256
*
* @param[in] input_ptr Pointer to the first source image. Supported data types: U8
* @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
* @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
*/
__kernel void hist_border_kernel_fixed(IMAGE_DECLARATION(input),
__global uint *restrict histogram)
{
Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
atomic_inc(histogram + *input_buffer.ptr);
}