blob: 2464e6cf9f45ef563a4eaf19ee6f31b0b9c108e7 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLHOGMultiDetection.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/runtime/CL/CLArray.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/Scheduler.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/CL/kernels/CLHOGDescriptorKernel.h"
#include "src/core/CL/kernels/CLHOGDetectorKernel.h"
#include "src/core/CL/kernels/CLMagnitudePhaseKernel.h"
using namespace arm_compute;
CLHOGMultiDetection::CLHOGMultiDetection(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
: _memory_group(std::move(memory_manager)),
_gradient_kernel(),
_orient_bin_kernel(),
_block_norm_kernel(),
_hog_detect_kernel(),
_non_maxima_kernel(),
_hog_space(),
_hog_norm_space(),
_detection_windows(),
_mag(),
_phase(),
_non_maxima_suppression(false),
_num_orient_bin_kernel(0),
_num_block_norm_kernel(0),
_num_hog_detect_kernel(0)
{
}
CLHOGMultiDetection::~CLHOGMultiDetection() = default;
void CLHOGMultiDetection::configure(ICLTensor *input, const ICLMultiHOG *multi_hog, ICLDetectionWindowArray *detection_windows, ICLSize2DArray *detection_window_strides, BorderMode border_mode,
uint8_t constant_border_value, float threshold, bool non_maxima_suppression, float min_distance)
{
configure(CLKernelLibrary::get().get_compile_context(), input, multi_hog, detection_windows, detection_window_strides, border_mode, constant_border_value, threshold, non_maxima_suppression,
min_distance);
}
void CLHOGMultiDetection::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLMultiHOG *multi_hog, ICLDetectionWindowArray *detection_windows,
ICLSize2DArray *detection_window_strides, BorderMode border_mode,
uint8_t constant_border_value, float threshold, bool non_maxima_suppression, float min_distance)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_INVALID_MULTI_HOG(multi_hog);
ARM_COMPUTE_ERROR_ON(nullptr == detection_windows);
ARM_COMPUTE_ERROR_ON(detection_window_strides->num_values() != multi_hog->num_models());
const size_t width = input->info()->dimension(Window::DimX);
const size_t height = input->info()->dimension(Window::DimY);
const TensorShape &shape_img = input->info()->tensor_shape();
const size_t num_models = multi_hog->num_models();
PhaseType phase_type = multi_hog->model(0)->info()->phase_type();
size_t prev_num_bins = multi_hog->model(0)->info()->num_bins();
Size2D prev_cell_size = multi_hog->model(0)->info()->cell_size();
Size2D prev_block_size = multi_hog->model(0)->info()->block_size();
Size2D prev_block_stride = multi_hog->model(0)->info()->block_stride();
/* Check if CLHOGOrientationBinningKernel and CLHOGBlockNormalizationKernel kernels can be skipped for a specific HOG data-object
*
* 1) CLHOGOrientationBinningKernel and CLHOGBlockNormalizationKernel are skipped if the cell size and the number of bins don't change.
* Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th
* 2) CLHOGBlockNormalizationKernel is skipped if the cell size, the number of bins and block size do not change.
* Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th
*
* @note Since the orientation binning and block normalization kernels can be skipped, we need to keep track of the input to process for each kernel
* with "input_orient_bin", "input_hog_detect" and "input_block_norm"
*/
std::vector<size_t> input_orient_bin;
std::vector<size_t> input_hog_detect;
std::vector<std::pair<size_t, size_t>> input_block_norm;
input_orient_bin.push_back(0);
input_hog_detect.push_back(0);
input_block_norm.emplace_back(0, 0);
for(size_t i = 1; i < num_models; ++i)
{
size_t cur_num_bins = multi_hog->model(i)->info()->num_bins();
Size2D cur_cell_size = multi_hog->model(i)->info()->cell_size();
Size2D cur_block_size = multi_hog->model(i)->info()->block_size();
Size2D cur_block_stride = multi_hog->model(i)->info()->block_stride();
if((cur_num_bins != prev_num_bins) || (cur_cell_size.width != prev_cell_size.width) || (cur_cell_size.height != prev_cell_size.height))
{
prev_num_bins = cur_num_bins;
prev_cell_size = cur_cell_size;
prev_block_size = cur_block_size;
prev_block_stride = cur_block_stride;
// Compute orientation binning and block normalization kernels. Update input to process
input_orient_bin.push_back(i);
input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
}
else if((cur_block_size.width != prev_block_size.width) || (cur_block_size.height != prev_block_size.height) || (cur_block_stride.width != prev_block_stride.width)
|| (cur_block_stride.height != prev_block_stride.height))
{
prev_block_size = cur_block_size;
prev_block_stride = cur_block_stride;
// Compute block normalization kernel. Update input to process
input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
}
// Update input to process for hog detector kernel
input_hog_detect.push_back(input_block_norm.size() - 1);
}
_detection_windows = detection_windows;
_non_maxima_suppression = non_maxima_suppression;
_num_orient_bin_kernel = input_orient_bin.size(); // Number of CLHOGOrientationBinningKernel kernels to compute
_num_block_norm_kernel = input_block_norm.size(); // Number of CLHOGBlockNormalizationKernel kernels to compute
_num_hog_detect_kernel = input_hog_detect.size(); // Number of CLHOGDetector functions to compute
_orient_bin_kernel.reserve(_num_orient_bin_kernel);
_block_norm_kernel.reserve(_num_block_norm_kernel);
_hog_detect_kernel.resize(_num_hog_detect_kernel);
_hog_space.resize(_num_orient_bin_kernel);
_hog_norm_space.resize(_num_block_norm_kernel);
// Allocate tensors for magnitude and phase
TensorInfo info_mag(shape_img, Format::S16);
_mag.allocator()->init(info_mag);
TensorInfo info_phase(shape_img, Format::U8);
_phase.allocator()->init(info_phase);
// Manage intermediate buffers
_memory_group.manage(&_mag);
_memory_group.manage(&_phase);
// Initialise gradient kernel
_gradient_kernel.configure(compile_context, input, &_mag, &_phase, phase_type, border_mode, constant_border_value);
// Configure NETensor for the HOG space and orientation binning kernel
for(size_t i = 0; i < _num_orient_bin_kernel; ++i)
{
const size_t idx_multi_hog = input_orient_bin[i];
// Get the corresponding cell size and number of bins
const Size2D &cell = multi_hog->model(idx_multi_hog)->info()->cell_size();
const size_t num_bins = multi_hog->model(idx_multi_hog)->info()->num_bins();
// Calculate number of cells along the x and y directions for the hog_space
const size_t num_cells_x = width / cell.width;
const size_t num_cells_y = height / cell.height;
// TensorShape of hog space
TensorShape shape_hog_space = input->info()->tensor_shape();
shape_hog_space.set(Window::DimX, num_cells_x);
shape_hog_space.set(Window::DimY, num_cells_y);
// Allocate HOG space
TensorInfo info_space(shape_hog_space, num_bins, DataType::F32);
_hog_space[i].allocator()->init(info_space);
// Manage intermediate buffers
_memory_group.manage(&_hog_space[i]);
// Initialise orientation binning kernel
_orient_bin_kernel.emplace_back(std::make_unique<CLHOGOrientationBinningKernel>());
_orient_bin_kernel.back()->configure(compile_context, &_mag, &_phase, &_hog_space[i], multi_hog->model(idx_multi_hog)->info());
}
// Allocate intermediate tensors
_mag.allocator()->allocate();
_phase.allocator()->allocate();
// Configure CLTensor for the normalized HOG space and block normalization kernel
for(size_t i = 0; i < _num_block_norm_kernel; ++i)
{
const size_t idx_multi_hog = input_block_norm[i].first;
const size_t idx_orient_bin = input_block_norm[i].second;
// Allocate normalized HOG space
TensorInfo tensor_info(*(multi_hog->model(idx_multi_hog)->info()), width, height);
_hog_norm_space[i].allocator()->init(tensor_info);
// Manage intermediate buffers
_memory_group.manage(&_hog_norm_space[i]);
// Initialize block normalization kernel
_block_norm_kernel.emplace_back(std::make_unique<CLHOGBlockNormalizationKernel>());
_block_norm_kernel.back()->configure(compile_context, &_hog_space[idx_orient_bin], &_hog_norm_space[i], multi_hog->model(idx_multi_hog)->info());
}
// Allocate intermediate tensors
for(size_t i = 0; i < _num_orient_bin_kernel; ++i)
{
_hog_space[i].allocator()->allocate();
}
detection_window_strides->map(CLScheduler::get().queue(), true);
// Configure HOG detector kernel
for(size_t i = 0; i < _num_hog_detect_kernel; ++i)
{
const size_t idx_block_norm = input_hog_detect[i];
_hog_detect_kernel[i].configure(compile_context, &_hog_norm_space[idx_block_norm], multi_hog->cl_model(i), detection_windows, detection_window_strides->at(i), threshold, i);
}
detection_window_strides->unmap(CLScheduler::get().queue());
// Configure non maxima suppression kernel
_non_maxima_kernel.configure(_detection_windows, min_distance);
// Allocate intermediate tensors
for(size_t i = 0; i < _num_block_norm_kernel; ++i)
{
_hog_norm_space[i].allocator()->allocate();
}
}
void CLHOGMultiDetection::run()
{
ARM_COMPUTE_ERROR_ON_MSG(_detection_windows == nullptr, "Unconfigured function");
MemoryGroupResourceScope scope_mg(_memory_group);
// Reset detection window
_detection_windows->clear();
// Run gradient
_gradient_kernel.run();
// Run orientation binning kernel
for(size_t i = 0; i < _num_orient_bin_kernel; ++i)
{
CLScheduler::get().enqueue(*_orient_bin_kernel[i], false);
}
// Run block normalization kernel
for(size_t i = 0; i < _num_block_norm_kernel; ++i)
{
CLScheduler::get().enqueue(*_block_norm_kernel[i], false);
}
// Run HOG detector kernel
for(size_t i = 0; i < _num_hog_detect_kernel; ++i)
{
_hog_detect_kernel[i].run();
}
// Run non-maxima suppression kernel if enabled
if(_non_maxima_suppression)
{
// Map detection windows array before computing non maxima suppression
_detection_windows->map(CLScheduler::get().queue(), true);
Scheduler::get().schedule(&_non_maxima_kernel, Window::DimY);
_detection_windows->unmap(CLScheduler::get().queue());
}
}