Add Gemm MMUL Reshaped Only Rhs Support for FP32/FP16

This patch introduces a GEMM routine that is optimized for Arm(R) Mali(TM)-G715 and Arm(R) Mali(TM)-G615

Resolves: COMPMID-5216
Signed-off-by: Gunes Bayir <gunes.bayir@arm.com>
Change-Id: I2e5d7806f5904347185bb3e250f73d73d6669dba
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/7914
Reviewed-by: SiCong Li <sicong.li@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Benchmark: Arm Jenkins <bsgcomp@arm.com>
diff --git a/tests/validation/fixtures/GEMMFixture.h b/tests/validation/fixtures/GEMMFixture.h
index 884b13d..55bbbda 100644
--- a/tests/validation/fixtures/GEMMFixture.h
+++ b/tests/validation/fixtures/GEMMFixture.h
@@ -163,18 +163,18 @@
             const int m          = reinterpret_output_as_3d ? output_shape[1] * output_shape[2] : output_shape[1];
             const int batch_size = reinterpret_output_as_3d ? output_shape[3] : output_shape[2];
 
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(c.data() + i * n, c.data(), n * sizeof(T));
             }
         }
-        
+
         /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
            therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
            in order to be able to call reference implementation that works with (B x M x K) input.
            Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
-           
+
         // Define transposed shapes
         TensorShape a_transposed_shape(a.shape().y(), a.shape().x());
         TensorShape b_transposed_shape(b.shape().y(), b.shape().x());
@@ -315,7 +315,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -438,7 +438,7 @@
         fill(rhs, 1);
         fill(bias, 2);
 
-        // In case of broadcast, we need simply copy the first into the following "M" ones
+        // In case of broadcast, we need to simply copy the first into the following "M" ones
         for(int i = 1; i < m * batch_size; i++)
         {
             memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -593,7 +593,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -748,7 +748,7 @@
         fill(rhs, 1);
         fill(bias, 2);
 
-        // In case of broadcast, we need simply copy the first into the following "M" ones
+        // In case of broadcast, we need to simply copy the first into the following "M" ones
         for(int i = 1; i < m * batch_size; i++)
         {
             memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -923,7 +923,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -1169,7 +1169,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -1361,7 +1361,7 @@
         fill(rhs, 1);
         fill(bias, 2);
 
-        // In case of broadcast, we need simply copy the first into the following "M" ones
+        // In case of broadcast, we need to simply copy the first into the following "M" ones
         for(int i = 1; i < m * batch_size; i++)
         {
             memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -1533,7 +1533,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -1759,7 +1759,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -1941,7 +1941,7 @@
         fill(rhs, 1);
         fill(bias, 2);
 
-        // In case of broadcast, we need simply copy the first into the following "M" ones
+        // In case of broadcast, we need to simply copy the first into the following "M" ones
         for(int i = 1; i < m * batch_size; i++)
         {
             memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -2078,7 +2078,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -2274,7 +2274,7 @@
 
         if(broadcast_bias)
         {
-            // In case of broadcast, we need simply copy the first into the following "M" ones
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
             for(int i = 1; i < m * batch_size; i++)
             {
                 memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -2421,7 +2421,7 @@
         fill(rhs, 1);
         fill(bias, 2);
 
-        // In case of broadcast, we need simply copy the first into the following "M" ones
+        // In case of broadcast, we need to simply copy the first into the following "M" ones
         for(int i = 1; i < m * batch_size; i++)
         {
             memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
@@ -2434,6 +2434,171 @@
     SimpleTensor<T> _reference{};
 };
 
+template <typename TensorType, typename AccessorType, typename T, typename ReshapeRHSOperatorType, typename GEMMOperatorType>
+class GEMMMatrixMultiplyReshapedOnlyRhsMMULValidationFixture : public framework::Fixture
+{
+public:
+    template <typename...>
+    void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, bool export_to_cl_image, DataType data_type, float alpha,
+               float beta, bool broadcast_bias,
+               const ActivationLayerInfo &act_info)
+    {
+        GEMMLHSMatrixInfo lhs_info;
+        lhs_info.m0 = m0;
+        lhs_info.k0 = k0;
+
+        GEMMRHSMatrixInfo rhs_info;
+        rhs_info.n0                 = n0;
+        rhs_info.k0                 = k0;
+        rhs_info.interleave         = true;
+        rhs_info.transpose          = false;
+        rhs_info.h0                 = 4;
+        rhs_info.export_to_cl_image = export_to_cl_image;
+
+        // Set the tensor shapes for LHS and RHS matrices
+        const TensorShape lhs_shape(k, m, batch_size);
+        const TensorShape rhs_shape(n, k, batch_size);
+        const TensorShape bias_shape(n,
+                                     broadcast_bias ? 1 : m,
+                                     broadcast_bias ? 1 : batch_size);
+
+        _target    = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, act_info);
+        _reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
+    }
+
+protected:
+    template <typename U>
+    void fill(U &&tensor, int i)
+    {
+        static_assert(std::is_floating_point<T>::value || std::is_same<T, half>::value, "Only floating point data types supported.");
+        using DistributionType = typename std::conditional<std::is_same<T, half>::value, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
+
+        DistributionType distribution{ T(-1.0f), T(1.0f) };
+        library->fill(tensor, distribution, i);
+
+        // Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
+        DistributionType distribution_inf{ T(std::numeric_limits<float>::infinity()), T(std::numeric_limits<float>::infinity()) };
+        library->fill_borders_with_garbage(tensor, distribution_inf, i);
+    }
+
+    TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+                              DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
+    {
+        // Create tensors
+        TensorType lhs  = create_tensor<TensorType>(lhs_shape, data_type, 1);
+        TensorType rhs  = create_tensor<TensorType>(rhs_shape, data_type, 1);
+        TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
+        TensorType rhs_reshaped;
+        TensorType dst;
+
+        const unsigned int M = lhs_shape[1];
+        const unsigned int N = rhs_shape[0];
+        const unsigned int K = lhs_shape[0];
+        GEMMKernelInfo     kernel_info;
+        kernel_info.m                       = M;
+        kernel_info.n                       = N;
+        kernel_info.k                       = K;
+        kernel_info.depth_output_gemm3d     = 0;
+        kernel_info.reinterpret_input_as_3d = false;
+        kernel_info.broadcast_bias          = broadcast_bias;
+        kernel_info.activation_info         = act_info;
+
+        // Create and configure function
+        ReshapeRHSOperatorType reshape_rhs;
+        GEMMOperatorType       gemm;
+
+        validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
+        if(!validate_result)
+        {
+            return nullptr;
+        }
+
+        reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
+
+        validate_result = bool(gemm.validate(lhs.info(), rhs_reshaped.info(), bias.info(), dst.info(), alpha, beta, lhs_info, rhs_info, kernel_info));
+        if(!validate_result)
+        {
+            return nullptr;
+        }
+
+        gemm.configure(lhs.info(), rhs_reshaped.info(), bias.info(), dst.info(), alpha, beta, lhs_info, rhs_info, kernel_info);
+
+        ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
+
+        // Allocate tensors
+        lhs.allocator()->allocate();
+        rhs.allocator()->allocate();
+        rhs_reshaped.allocator()->allocate();
+        bias.allocator()->allocate();
+        dst.allocator()->allocate();
+
+        ARM_COMPUTE_ASSERT(!lhs.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(!rhs.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(!rhs_reshaped.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
+        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+
+        // Fill tensors
+        fill(AccessorType(lhs), 0);
+        fill(AccessorType(rhs), 1);
+        fill(AccessorType(bias), 2);
+
+        // Compute GEMM
+        ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
+        reshape_rhs.run(reshape_rhs_pack);
+        ITensorPack gemm_pack({ { ACL_SRC_0, &lhs },
+            { ACL_SRC_1, &rhs_reshaped },
+            { ACL_SRC_2, &bias },
+            { ACL_DST, &dst }
+        });
+        gemm.run(gemm_pack);
+
+        return dst;
+    }
+
+    SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
+                                      const ActivationLayerInfo &act_info)
+    {
+        if(!validate_result)
+            return SimpleTensor<T>();
+
+        TensorShape dst_shape = lhs_shape;
+        dst_shape[0]          = rhs_shape[0];
+        dst_shape[1]          = lhs_shape[1];
+
+        // Create reference
+        SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
+        SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
+        SimpleTensor<T> bias{ dst_shape, data_type, 1 };
+
+        const int n          = rhs_shape[0];
+        const int m          = lhs_shape[1];
+        const int batch_size = lhs_shape[2];
+
+        // Fill reference
+        fill(lhs, 0);
+        fill(rhs, 1);
+        fill(bias, 2);
+
+        if(broadcast_bias)
+        {
+            // In case of broadcast, we need to simply copy the first into the following "M" ones
+            for(int i = 1; i < m * batch_size; i++)
+            {
+                memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
+            }
+        }
+
+        return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
+    }
+
+    bool            validate_result = true;
+    TensorType      _target{};
+    SimpleTensor<T> _reference{};
+};
+
 } // namespace validation
 } // namespace test
 } // namespace arm_compute