blob: e4f51175f0a9d5f512ceba4c2604b2ad126acce5 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "tests/NEON/Accessor.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/FullyConnectedLayer.h"
#include "tests/validation/reference/Permute.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
#include "ValidateExample.h"
#include <utility>
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
using namespace arm_compute::graph;
using namespace arm_compute;
using namespace arm_compute::test;
using namespace arm_compute::test::validation;
namespace
{
/** Structure holding all the input tensor graph parameters */
struct TensorParams
{
int width{ 1 };
int height{ 1 };
int fm{ 1 };
int batch{ 1 };
QuantizationInfo quant_info{ 1.0f, 0 };
uint64_t range_low{ 0 };
uint64_t range_high{ 16 };
};
/** Structure holding all the verification graph parameters */
struct VerificationParams
{
float absolute_tolerance{ -1.f };
float relative_tolerance{ -1.f };
float tolerance_number{ -1.f };
};
/** Structure holding all the common graph parameters */
struct FrameworkParams
{
bool help{ false };
int threads{ 0 };
arm_compute::graph::Target target{ arm_compute::graph::Target::NEON };
};
/** Structure holding all the fully_connected layer graph parameters */
struct FullyConnectedParams
{
arm_compute::DataType data_type{ DataType::F32 };
arm_compute::DataLayout data_layout{ DataLayout::NCHW };
FullyConnectedLayerInfo info{};
int num_outputs{ 1 };
};
/** Structure holding all the graph Example parameters */
struct ExampleParams
{
FrameworkParams common_params{};
TensorParams input{};
TensorParams weights{};
TensorParams output{};
VerificationParams verification{};
FullyConnectedParams fully_connected{};
};
/** Formatted output of the fully_connectedParams type
*
* @param[out] os Output stream.
* @param[in] common_params fully_connected parameters to output
*
* @return Modified output stream.
*/
::std::ostream &operator<<(::std::ostream &os, const ExampleParams &common_params)
{
std::string false_str = std::string("false");
std::string true_str = std::string("true");
os << "Threads : " << common_params.common_params.threads << std::endl;
os << "Target : " << common_params.common_params.target << std::endl;
os << "Data type : " << common_params.fully_connected.data_type << std::endl;
os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
<< std::endl;
os << "Number of outputs : " << common_params.fully_connected.num_outputs << std::endl;
return os;
}
/** fully_connected command line options used to configure the graph examples
*
* (Similar to common options)
* The options in this object get populated when "parse()" is called on the parser used to construct it.
* The expected workflow is:
*
* CommandLineParser parser;
* CommonOptions options( parser );
* parser.parse(argc, argv);
*/
class FullyConnectedOptions final
{
public:
explicit FullyConnectedOptions(CommandLineParser &parser) noexcept
: width(parser.add_option<SimpleOption<int>>("width", 3)),
batch(parser.add_option<SimpleOption<int>>("batch", 1)),
help(parser.add_option<ToggleOption>("help")),
threads(parser.add_option<SimpleOption<int>>("threads")),
target(),
data_type(),
absolute_tolerance(parser.add_option<SimpleOption<float>>("abs_tolerance", -1.0f)),
relative_tolerance(parser.add_option<SimpleOption<float>>("rel_tolerance", -1.0f)),
tolerance_number(parser.add_option<SimpleOption<float>>("tolerance_num", -1.0f)),
input_scale(parser.add_option<SimpleOption<float>>("input_scale", 1.0f)),
input_offset(parser.add_option<SimpleOption<int>>("input_offset", 0)),
weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
num_outputs(parser.add_option<SimpleOption<int>>("num_outputs", 1)),
input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high"))
{
const std::set<arm_compute::graph::Target> supported_targets
{
Target::NEON,
Target::CL,
Target::GC,
};
const std::set<arm_compute::DataType> supported_data_types
{
DataType::F16,
DataType::F32,
DataType::QASYMM8,
};
target = parser.add_option<EnumOption<Target>>("target", supported_targets, Target::NEON);
data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
target->set_help("Target to execute on");
data_type->set_help("Data type to use");
help->set_help("Show this help message");
width->set_help("Set Input dimension width");
batch->set_help("Set Input dimension batch");
absolute_tolerance->set_help("Absolute tolerance used for verification");
relative_tolerance->set_help("Absolute tolerance used for verification");
tolerance_number->set_help("Absolute tolerance used for verification");
input_scale->set_help("Quantization scale from QASYMM8");
input_offset->set_help("Quantization offset from QASYMM8");
weights_scale->set_help("Quantization scale from QASYMM8");
weights_offset->set_help("Quantization offset from QASYMM8");
output_scale->set_help("Quantization scale from QASYMM8");
output_offset->set_help("Quantization offset from QASYMM8");
num_outputs->set_help("Number of outputs.");
input_range_low->set_help("Lower bound for input randomization range");
input_range_high->set_help("Lower bound for input randomization range");
weights_range_low->set_help("Lower bound for input randomization range");
weights_range_high->set_help("Lower bound for input randomization range");
}
/** Prevent instances of this class from being copied (As this class contains pointers) */
FullyConnectedOptions(const FullyConnectedOptions &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
FullyConnectedOptions &operator=(const FullyConnectedOptions &) = delete;
/** Allow instances of this class to be moved */
FullyConnectedOptions(FullyConnectedOptions &&) noexcept(true) = default;
/** Allow instances of this class to be moved */
FullyConnectedOptions &operator=(FullyConnectedOptions &&) noexcept(true) = default;
/** Default destructor */
~FullyConnectedOptions() = default;
SimpleOption<int> *width; /**< Input width */
SimpleOption<int> *batch; /**< Input batch */
ToggleOption *help; /**< show help message */
SimpleOption<int> *threads; /**< Number of threads option */
EnumOption<arm_compute::graph::Target> *target; /**< Graph execution target */
EnumOption<arm_compute::DataType> *data_type; /**< Graph data type */
SimpleOption<float> *absolute_tolerance; /**< Absolute tolerance used in verification */
SimpleOption<float> *relative_tolerance; /**< Relative tolerance used in verification */
SimpleOption<float> *tolerance_number; /**< Tolerance number used in verification */
SimpleOption<float> *input_scale; /**< Input Quantization scale from QASSYMM8 */
SimpleOption<int> *input_offset; /**< Input Quantization offset from QASSYMM8 */
SimpleOption<float> *weights_scale; /**< Weights Quantization scale from QASSYMM8 */
SimpleOption<int> *weights_offset; /**< Weights Quantization offset from QASSYMM8 */
SimpleOption<float> *output_scale; /**< Output Quantization scale from QASSYMM8 */
SimpleOption<int> *output_offset; /**< Output Quantization offset from QASSYMM8 */
SimpleOption<int> *num_outputs; /**< Number of outputs. */
SimpleOption<uint64_t> *input_range_low; /**< Lower bound for input randomization range */
SimpleOption<uint64_t> *input_range_high; /**< Upper bound for input randomization range */
SimpleOption<uint64_t> *weights_range_low; /**< Lower bound for weights randomization range */
SimpleOption<uint64_t> *weights_range_high; /**< Upper bound for weights randomization range */
};
/** Consumes the fully_connected graph options and creates a structure containing any information
*
* @param[in] options Options to consume
*
* @return fully_connectedparams structure containing the common graph parameters
*/
ExampleParams consume_fully_connected_graph_parameters(FullyConnectedOptions &options)
{
ExampleParams common_params;
common_params.common_params.help = options.help->is_set() ? options.help->value() : false;
common_params.common_params.threads = options.threads->value();
common_params.common_params.target = options.target->value();
common_params.input.width = options.width->value();
common_params.input.batch = options.batch->value();
common_params.input.quant_info.scale = options.input_scale->value();
common_params.input.quant_info.offset = options.input_offset->value();
common_params.input.range_low = options.input_range_low->value();
common_params.input.range_high = options.input_range_high->value();
common_params.weights.quant_info.scale = options.weights_scale->value();
common_params.weights.quant_info.offset = options.weights_offset->value();
common_params.weights.range_low = options.weights_range_low->value();
common_params.weights.range_high = options.weights_range_high->value();
common_params.output.quant_info.scale = options.output_scale->value();
common_params.output.quant_info.offset = options.output_offset->value();
common_params.fully_connected.data_type = options.data_type->value();
common_params.fully_connected.num_outputs = options.num_outputs->value();
common_params.verification.absolute_tolerance = options.absolute_tolerance->value();
common_params.verification.relative_tolerance = options.relative_tolerance->value();
common_params.verification.tolerance_number = options.tolerance_number->value();
return common_params;
}
/** fully_connectedLayer Graph example validation accessor class */
template <typename D>
class FullyConnectedVerifyAccessor final : public graph::ITensorAccessor
{
public:
using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
/** Constructor
*
* @param[in] params fully_connected parameters
*/
explicit FullyConnectedVerifyAccessor(ExampleParams &params)
: _params(params)
{
}
// Inherited methods overridden:
bool access_tensor(ITensor &tensor) override
{
const RelativeTolerance<float> rel_tolerance(relative_tolenace(_params.verification.relative_tolerance)); /**< Relative tolerance */
const AbsoluteTolerance<float> abs_tolerance(absolute_tolerance(_params.verification.absolute_tolerance)); /**< Absolute tolerance */
const float tolerance_num(tolerance_number(_params.verification.tolerance_number)); /**< Tolerance number */
// Calculate Tensor shapes for verification
const TensorShape input_shape = TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch);
const TensorDescriptor input_descriptor = TensorDescriptor(input_shape, _params.fully_connected.data_type, _params.input.quant_info);
const TensorDescriptor weights_descriptor = FullyConnectedLayerNode::compute_weights_descriptor(input_descriptor,
_params.fully_connected.num_outputs,
_params.fully_connected.info,
_params.weights.quant_info);
const TensorDescriptor output_desciptor = FullyConnectedLayerNode::compute_output_descriptor(input_descriptor, _params.fully_connected.num_outputs, _params.output.quant_info);
//Create Input tensors
SimpleTensor<D> src{ input_descriptor.shape, _params.fully_connected.data_type, 1, input_descriptor.quant_info };
SimpleTensor<D> weights{ weights_descriptor.shape, _params.fully_connected.data_type, 1, weights_descriptor.quant_info };
SimpleTensor<TBias> bias{ TensorShape(tensor.info()->tensor_shape().x()), _params.fully_connected.data_type, 1, _params.input.quant_info };
//Fill the tensors with random values
fill_tensor<D>(src, 0, static_cast<D>(_params.input.range_low), static_cast<D>(_params.input.range_high));
fill_tensor<D>(weights, 1, static_cast<D>(_params.weights.range_low), static_cast<D>(_params.weights.range_high));
fill_tensor<TBias>(bias, 2, static_cast<TBias>(_params.input.range_low), static_cast<TBias>(_params.input.range_high));
//Calculate reference
SimpleTensor<D> output = reference::fully_connected_layer<D>(src, weights, bias, output_desciptor.shape, _params.output.quant_info);
arm_compute::test::validation::validate(Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance);
return false;
}
private:
/** Fill tensor with Random values.
*
* Validate the given tensor against the reference result.
*
* @param[out] tensor The tensor we want to file
* @param[in] seed seed for the randomization function
* @param[in] low lower bound for random values
* @param[in] high upper bound for random values
*
* @return None.
*/
template <typename T>
void fill_tensor(arm_compute::test::SimpleTensor<T> &tensor, std::random_device::result_type seed, T low, T high)
{
std::mt19937 gen(seed);
switch(tensor.data_type())
{
case arm_compute::DataType::QASYMM8:
{
const uint8_t qasymm8_low = tensor.quantization_info().quantize(low, RoundingPolicy::TO_NEAREST_UP);
const uint8_t qasymm8_high = tensor.quantization_info().quantize(high, RoundingPolicy::TO_NEAREST_UP);
std::uniform_int_distribution<uint8_t> distribution(qasymm8_low, qasymm8_high);
for(int i = 0; i < tensor.num_elements(); ++i)
{
tensor[i] = tensor.quantization_info().quantize(distribution(gen), RoundingPolicy::TO_NEAREST_UP);
}
break;
}
case arm_compute::DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution(static_cast<int32_t>(low), static_cast<uint32_t>(high));
for(int i = 0; i < tensor.num_elements(); ++i)
{
tensor[i] = distribution(gen);
}
break;
}
case arm_compute::DataType::F16:
{
std::uniform_real_distribution<float> distribution(static_cast<half>(low), static_cast<half>(high));
for(int i = 0; i < tensor.num_elements(); ++i)
{
tensor[i] = static_cast<half>(distribution(gen));
}
break;
}
case arm_compute::DataType::F32:
{
std::uniform_real_distribution<float> distribution(static_cast<float>(low), static_cast<float>(high));
for(int i = 0; i < tensor.num_elements(); ++i)
{
tensor[i] = distribution(gen);
}
break;
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Select relative tolerance.
*
* Select relative tolerance if not supplied by user.
*
* @param[in] user_value supplied relative tolerance. -1 designates no user input
*
* @return Appropriate relative tolerance.
*/
float relative_tolenace(float user_value)
{
const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
{
{
arm_compute::graph::Target::CL,
{ { DataType::F16, 0.2f },
{ DataType::F32, 0.05f },
{ DataType::QASYMM8, 1.0f }
}
},
{
arm_compute::graph::Target::NEON,
{ { DataType::F16, 0.2f },
{ DataType::F32, 0.01f },
{ DataType::QASYMM8, 1.0f }
}
}
};
if(user_value == -1)
{
return relative_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type);
}
return user_value;
}
/** Select absolute tolerance.
*
* Select absolute tolerance if not supplied by user.
*
* @param[in] user_value supplied absolute tolerance. -1 designates no user input
*
* @return Appropriate absolute tolerance.
*/
float absolute_tolerance(float user_value)
{
const std::map<Target, const std::map<DataType, float>> absolute_tolerance
{
{
Target::CL,
{ { DataType::F16, 0.0f },
{ DataType::F32, 0.0001f },
{ DataType::QASYMM8, 1.0f }
}
},
{
Target::NEON,
{ { DataType::F16, 0.3f },
{ DataType::F32, 0.1f },
{ DataType::QASYMM8, 1.0f }
}
}
};
if(user_value == -1)
{
return absolute_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type);
}
return user_value;
}
/** Select tolerance number.
*
* Select tolerance number if not supplied by user.
*
* @param[in] user_value supplied tolerance number. -1 designates no user input
*
* @return Appropriate tolerance number.
*/
float tolerance_number(float user_value)
{
const std::map<Target, const std::map<DataType, float>> absolute_tolerance
{
{
Target::CL,
{ { DataType::F16, 0.07f },
{ DataType::F32, 0.07f },
{ DataType::QASYMM8, 0.0f }
}
},
{
Target::NEON,
{ { DataType::F16, 0.07f },
{ DataType::F32, 0.0f },
{ DataType::QASYMM8, 0.0f }
}
}
};
if(user_value == -1)
{
return absolute_tolerance.at(_params.common_params.target).at(_params.fully_connected.data_type);
}
return user_value;
}
ExampleParams _params;
};
/** Generates appropriate fully_connected verify accessor
*
* @param[in] params User supplied parameters for fully_connected.
*
* @return A fully_connected verify accessor for the requested datatype.
*/
inline std::unique_ptr<graph::ITensorAccessor> get_fully_connected_verify_accessor(ExampleParams params)
{
switch(params.fully_connected.data_type)
{
case DataType::QASYMM8:
{
return arm_compute::support::cpp14::make_unique<FullyConnectedVerifyAccessor<uint8_t>>(
params);
}
case DataType::F16:
{
return arm_compute::support::cpp14::make_unique<FullyConnectedVerifyAccessor<half>>(
params);
}
case DataType::F32:
{
return arm_compute::support::cpp14::make_unique<FullyConnectedVerifyAccessor<float>>(
params);
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
} // namespace
class Graphfully_connectedValidateExample final : public ValidateExample
{
public:
Graphfully_connectedValidateExample()
: graph(0, "fully_connected Graph example")
{
}
bool do_setup(int argc, char **argv) override
{
CommandLineParser parser;
FullyConnectedOptions Options(parser);
parser.parse(argc, argv);
ExampleParams params = consume_fully_connected_graph_parameters(Options);
if(params.common_params.help)
{
parser.print_help(argv[0]);
return false;
}
std::cout << params << std::endl;
// Create input descriptor
const TensorShape input_shape = TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch);
const TensorDescriptor input_descriptor = TensorDescriptor(input_shape, params.fully_connected.data_type, params.input.quant_info, params.fully_connected.data_layout);
const PixelValue lower = PixelValue(params.input.range_low, params.fully_connected.data_type, params.input.quant_info);
const PixelValue upper = PixelValue(params.input.range_high, params.fully_connected.data_type, params.input.quant_info);
const PixelValue weights_lower = PixelValue(params.weights.range_low, params.fully_connected.data_type, params.weights.quant_info);
const PixelValue weights_upper = PixelValue(params.weights.range_high, params.fully_connected.data_type, params.weights.quant_info);
graph << params.common_params.target
<< InputLayer(input_descriptor, get_random_accessor(lower, upper, 0))
<< FullyConnectedLayer(params.fully_connected.num_outputs,
get_random_accessor(weights_lower, weights_upper, 1),
get_random_accessor(lower, upper, 2),
params.fully_connected.info, params.weights.quant_info, params.output.quant_info)
<< OutputLayer(get_fully_connected_verify_accessor(params));
GraphConfig config;
config.num_threads = params.common_params.threads;
graph.finalize(params.common_params.target, config);
return true;
}
void do_run() override
{
graph.run();
}
void do_teardown() override
{
}
private:
Stream graph;
};
/** Main program for Graph fully_connected test
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments ( Input dimensions [width, batch]
* Fully connected [num_outputs,type]
* Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
*
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<Graphfully_connectedValidateExample>(argc, argv);
}