blob: 48197d6473610244d93314a800501ee223294bb3 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
/** Calculates L1 normalization between two inputs.
*
* @param[in] a First input. Supported data types: S16, S32
* @param[in] b Second input. Supported data types: S16, S32
*
* @return L1 normalization magnitude result. Supported data types: S16, S32
*/
inline VEC_DATA_TYPE(DATA_TYPE, 16) magnitude_l1(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b)
{
return CONVERT_SAT(add_sat(abs(a), abs(b)), VEC_DATA_TYPE(DATA_TYPE, 16));
}
/** Calculates L2 normalization between two inputs.
*
* @param[in] a First input. Supported data types: S16, S32
* @param[in] b Second input. Supported data types: S16, S32
*
* @return L2 normalization magnitude result. Supported data types: S16, S32
*/
inline VEC_DATA_TYPE(DATA_TYPE, 16) magnitude_l2(int16 a, int16 b)
{
return CONVERT_SAT((sqrt(convert_float16((convert_uint16(a * a) + convert_uint16(b * b)))) + 0.5f),
VEC_DATA_TYPE(DATA_TYPE, 16));
}
/** Calculates unsigned phase between two inputs.
*
* @param[in] a First input. Supported data types: S16, S32
* @param[in] b Second input. Supported data types: S16, S32
*
* @return Unsigned phase mapped in the interval [0, 180]. Supported data types: U8
*/
inline uchar16 phase_unsigned(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b)
{
float16 angle_deg_f32 = atan2pi(convert_float16(b), convert_float16(a)) * (float16)180.0f;
angle_deg_f32 = select(angle_deg_f32, (float16)180.0f + angle_deg_f32, angle_deg_f32 < (float16)0.0f);
return convert_uchar16(angle_deg_f32);
}
/** Calculates signed phase between two inputs.
*
* @param[in] a First input. Supported data types: S16, S32
* @param[in] b Second input. Supported data types: S16, S32
*
* @return Signed phase mapped in the interval [0, 256). Supported data types: U8
*/
inline uchar16 phase_signed(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b)
{
float16 arct = atan2pi(convert_float16(b), convert_float16(a));
arct = select(arct, arct + 2, arct < 0.0f);
return convert_uchar16(convert_int16(mad(arct, 128, 0.5f)) & (int16)0xFFu);
}
#if(1 == MAGNITUDE)
#define MAGNITUDE_OP(x, y) magnitude_l1((x), (y))
#elif(2 == MAGNITUDE)
#define MAGNITUDE_OP(x, y) magnitude_l2(convert_int16(x), convert_int16(y))
#else /* MAGNITUDE */
#define MAGNITUDE_OP(x, y)
#endif /* MAGNITUDE */
#if(1 == PHASE)
#define PHASE_OP(x, y) phase_unsigned((x), (y))
#elif(2 == PHASE)
#define PHASE_OP(x, y) phase_signed((x), (y))
#else /* PHASE */
#define PHASE_OP(x, y)
#endif /* PHASE */
/** Calculate the magnitude and phase of given the gradients of an image.
*
* @note Magnitude calculation supported: L1 normalization(type = 1) and L2 normalization(type = 2).
* @note Phase calculation supported: Unsigned(type = 1) [0,128] and Signed(type = 2) [0,256).
*
* @attention To enable phase calculation -DPHASE="phase_calculation_type_id" must be provided at compile time. eg -DPHASE=1
* @attention To enable magnitude calculation -DMAGNITUDE="magnitude_calculation_type_id" must be provided at compile time. eg -DMAGNITUDE=1
* @attention Datatype of the two inputs is passed at compile time using -DDATA_TYPE. e.g -DDATA_TYPE=short. Supported data_types are: short and int
*
* @param[in] gx_ptr Pointer to the first source image (gradient X). Supported data types: S16, S32
* @param[in] gx_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] gx_step_x gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gx_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] gx_step_y gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] gx_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] gy_ptr Pointer to the second source image (gradient Y) . Supported data types: S16, S32
* @param[in] gy_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] gy_step_x gy_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gy_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] gy_step_y gy_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] gy_offset_first_element_in_bytes The offset of the first element in the destination image
* @param[out] magnitude_ptr Pointer to the magnitude destination image. Supported data types: S16, S32
* @param[in] magnitude_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] magnitude_step_x magnitude_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] magnitude_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] magnitude_step_y magnitude_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] magnitude_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] phase_ptr Pointer to the phase destination image. Supported data types: U8
* @param[in] phase_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] phase_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] phase_offset_first_element_in_bytes The offset of the first element in the destination image
* */
__kernel void magnitude_phase(
IMAGE_DECLARATION(gx),
IMAGE_DECLARATION(gy)
#ifdef MAGNITUDE
,
IMAGE_DECLARATION(magnitude)
#endif /* MAGNITUDE */
#ifdef PHASE
,
IMAGE_DECLARATION(phase)
#endif /* PHASE */
)
{
// Get pixels pointer
Image gx = CONVERT_TO_IMAGE_STRUCT(gx);
Image gy = CONVERT_TO_IMAGE_STRUCT(gy);
// Load values
VEC_DATA_TYPE(DATA_TYPE, 16)
in_a = vload16(0, (__global DATA_TYPE *)gx.ptr);
VEC_DATA_TYPE(DATA_TYPE, 16)
in_b = vload16(0, (__global DATA_TYPE *)gy.ptr);
// Calculate and store the results
#ifdef MAGNITUDE
Image magnitude = CONVERT_TO_IMAGE_STRUCT(magnitude);
vstore16(MAGNITUDE_OP(in_a, in_b), 0, (__global DATA_TYPE *)magnitude.ptr);
#endif /* MAGNITUDE */
#ifdef PHASE
Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
vstore16(PHASE_OP(in_a, in_b), 0, phase.ptr);
#endif /* PHASE */
}