blob: e6df3041c246f56ce832d26540aa9e8920716cd2 [file] [log] [blame]
/*
* Copyright (c) 2018-2021, 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(DATA_TYPE) && defined(NUM_REVERSE_DIMS)
#if NUM_REVERSE_DIMS > 4
#error("Reversing more than 4 dimensions is not currently supported")
#endif /* NUM_REVERSE_DIMS > 4 */
/** Performs reverse along the specified axis.
*
* @note The data type must be given as a preprocessor argument using -DDATA_TYPE=num. e.g. -DDATA_TYPE=uint
* @note The number of dimensions to reverse must be given as a preprocessor argument using -DNUM_REVERSE_DIMS=num, e.g. -DNUM_REVERSE_DIMS=3
* @note The number of dimensions of the source tensor must be given as a preprocessor argument using -DRANK=num, e.g. -DRANK=3
* @note The values in axis_tensor must be within [-rank, rank-1].
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: All
* @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[in] axis_ptr Pointer to the source vector. Supported data types: U32
* @param[in] axis_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] axis_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] axis_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void reverse(TENSOR4D_DECLARATION(src),
VECTOR_DECLARATION(axis),
TENSOR4D_DECLARATION(dst),
const uint width,
const uint height,
const uint depth,
const uint batches)
{
Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, depth);
Vector axis = CONVERT_TO_VECTOR_STRUCT_NO_STEP(axis);
Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(dst);
const uint x_in = get_global_id(0);
const uint y_in = get_global_id(1);
const uint z_in = get_global_id(2) % depth;
const uint w_in = get_global_id(2) / depth;
const uint4 dims = (uint4)(0, 1, 2, 3);
int4 to_reverse = (int4)(0, 0, 0, 0);
VEC_DATA_TYPE(int, NUM_REVERSE_DIMS) indices = VLOAD(NUM_REVERSE_DIMS)(0,(__global int *)axis.ptr);
#if defined(USE_INVERTED_AXIS)
indices = select((VEC_DATA_TYPE(int, NUM_REVERSE_DIMS)) RANK - 1, -1, indices < 0) - indices;
#else /* defined(USE_INVERTED_AXIS) */
indices = select(indices, indices + RANK, indices < 0);
#endif /* defined(USE_INVERTED_AXIS) */
#if NUM_REVERSE_DIMS == 1
to_reverse = ((uint4)indices == dims);
#elif NUM_REVERSE_DIMS == 2
to_reverse = ((uint4)indices.s0 == dims) || ((uint4)indices.s1 == dims);
#elif NUM_REVERSE_DIMS == 3
to_reverse = ((uint4)indices.s0 == dims) || ((uint4)indices.s1 == dims) || ((uint4)indices.s2 == dims);
#else /* NUM_REVERSE_DIMS == 1 */
to_reverse = ((uint4)indices.s0 == dims) || ((uint4)indices.s1 == dims) || ((uint4)indices.s2 == dims) || ((uint4)indices.s3 == dims);
#endif /* NUM_REVERSE_DIMS == 1 */
const uint x_out = to_reverse.s0 ? width - x_in - 1 : x_in;
const uint y_out = to_reverse.s1 ? height - y_in - 1 : y_in;
const uint z_out = to_reverse.s2 ? depth - z_in - 1 : z_in;
const uint w_out = to_reverse.s3 ? batches - w_in - 1 : w_in;
*((__global DATA_TYPE *)tensor4D_offset(&dst, x_out, y_out, z_out, w_out)) = *((__global DATA_TYPE *)src.ptr);
}
#endif // defined(DATA_TYPE) && defined(NUM_REVERSE_DIMS)