Reorganize the kernels into nhwc, nchw and common folders

The Following kernels have been split into nchw/nhwc kernels files:

- batchnormalization_layer
- batch_to_space
- channel_shuffle
- depth_to_space
- dequantization_layer
- im2col
- normalization_layer
- normalize_planar_yuv_layer
- normalize_planar_yuv_layer_quantized
- pooling_layer
- pooling_layer_quantized
- remap
- reorg_layer
- scale
- scale_quantized
- space_to_batch
- space_to_depth
- upsample_layer
- winograd_filter_transform
- winograd_input_transform
- winograd_output_transform

The following kernels have been moved to nchw folder:
- direct_convolution1x1
- direct_convolution3x3
- direct_convolution5x5
- direct_convolution_quantized
- prior_box_layer

The following kernels have been moved to nhwc folder:
- direct_convolution
- dwc_native_fp_nhwc
- dwc_native_quantized_nhwc

The following kernels have been removed:
- sobel_filter

While the rest kerenls have been moved to the common folder.

Partially resolves COMPMID-4453

Signed-off-by: Adnan AlSinan <adnan.alsinan@arm.com>
Change-Id: Ic327ac935687ec351c610c65a3c6357f364a5a58
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5919
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/CL/cl_kernels/common/fft.cl b/src/core/CL/cl_kernels/common/fft.cl
new file mode 100644
index 0000000..3f26d0f
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/fft.cl
@@ -0,0 +1,1880 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+#if defined(DATA_TYPE)
+/** Calculates and applies the twiddle factor to a given input.
+ *
+ * @param[in]     phi   The angle.
+ * @param[in,out] input The input on which the factor should be applied.
+ */
+#define TWIDDLE_FACTOR_MULTIPLICATION(phi, input)  \
+    {                                              \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                \
+        w, tmp;                                    \
+        w.x   = cos(phi);                          \
+        w.y   = sin(phi);                          \
+        tmp.x = (w.x * input.x) - (w.y * input.y); \
+        tmp.y = (w.x * input.y) + (w.y * input.x); \
+        input = tmp;                               \
+    }
+
+/** Computes radix-2 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ */
+#define DFT_2(c0, c1)               \
+    {                               \
+        VEC_DATA_TYPE(DATA_TYPE, 2) \
+        v0;                         \
+        v0 = c0;                    \
+        c0 = v0 + c1;               \
+        c1 = v0 - c1;               \
+    }
+
+// radix-3 butterfly unit factors
+#define SQRT3DIV2 0.86602540378443f
+
+/** Computes radix-3 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ */
+#define DFT_3(c0, c1, c2)                             \
+    {                                                 \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                   \
+        v0 = c1 + c2;                                 \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                   \
+        v1   = c1 - c2;                               \
+        c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \
+        c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \
+        c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \
+        c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \
+        c0   = c0 + v0;                               \
+    }
+
+/**Computes radix-4 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ */
+#define DFT_4(c0, c1, c2, c3)       \
+    {                               \
+        VEC_DATA_TYPE(DATA_TYPE, 2) \
+        v0, v1, v2, v3;             \
+        v0   = c0 + c2;             \
+        v1   = c1 + c3;             \
+        v2   = c0 - c2;             \
+        v3.x = c1.y - c3.y;         \
+        v3.y = c3.x - c1.x;         \
+        c0   = v0 + v1;             \
+        c2   = v0 - v1;             \
+        c1   = v2 + v3;             \
+        c3   = v2 - v3;             \
+    }
+
+// radix-5 butterfly unit factors
+#define W5_A (DATA_TYPE)0.30901699437494f
+#define W5_B (DATA_TYPE)0.95105651629515f
+#define W5_C (DATA_TYPE)0.80901699437494f
+#define W5_D (DATA_TYPE)0.58778525229247f
+
+/** Computes radix-5 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ */
+#define DFT_5(c0, c1, c2, c3, c4)                                  \
+    {                                                              \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                                \
+        v0, v1, v2, v3, v4;                                        \
+        v0 = c0;                                                   \
+        v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3);                  \
+        v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3);                  \
+        v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3);                  \
+        v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3);                  \
+        c0 = v0 + c1 + c2 + c3 + c4;                               \
+        c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \
+        c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v3.y, -v3.x); \
+        c3 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v3.y, v3.x); \
+        c4 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \
+    }
+
+// radix-7 butterfly unit factors
+#define W7_A (DATA_TYPE)0.62348980185873f
+#define W7_B (DATA_TYPE)0.78183148246802f
+#define W7_C (DATA_TYPE)0.22252093395631f
+#define W7_D (DATA_TYPE)0.97492791218182f
+#define W7_E (DATA_TYPE)0.90096886790241f
+#define W7_F (DATA_TYPE)0.43388373911755f
+
+/** Computes radix-7 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ * @param[in,out] c5 Complex input 5.
+ * @param[in,out] c6 Complex input 6.
+ */
+#define DFT_7(c0, c1, c2, c3, c4, c5, c6)                            \
+    {                                                                \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                                  \
+        v0, v1, v2, v3, v4, v5, v6;                                  \
+        v0 = c0;                                                     \
+        v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \
+        v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \
+        v3 = W7_E * (c1 + c6) - W7_A * (c2 + c5) + W7_C * (c3 + c4); \
+        v4 = W7_B * (c1 - c6) + W7_D * (c2 - c5) + W7_F * (c3 - c4); \
+        v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \
+        v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \
+        c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6;                       \
+        c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x);   \
+        c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v5.y, -v5.x);   \
+        c3 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v6.y, -v6.x);   \
+        c4 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v6.y, v6.x);   \
+        c5 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v5.y, v5.x);   \
+        c6 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x);   \
+    }
+
+/** Computes radix-8 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ * @param[in,out] c5 Complex input 5.
+ * @param[in,out] c6 Complex input 6.
+ * @param[in,out] c7 Complex input 7.
+ */
+#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \
+    {                                         \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        v0, v1, v2, v3, v4, v5, v6, v7;       \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        s0, s1, s2, s3, s4, s5, s6, s7;       \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        t0, t1, t2;                           \
+        v0   = c0 + c4;                       \
+        v1   = c1 + c5;                       \
+        v2   = c2 + c6;                       \
+        v3   = c3 + c7;                       \
+        v4   = c0 - c4;                       \
+        v5   = c1 - c5;                       \
+        v6   = c2 - c6;                       \
+        v7   = c3 - c7;                       \
+        s0   = v0 + v2;                       \
+        s1   = v1 + v3;                       \
+        s2   = v0 - v2;                       \
+        s3   = v1 - v3;                       \
+        s4.x = v4.x - v6.y;                   \
+        s4.y = v4.y + v6.x;                   \
+        s5.x = v5.x - v7.y;                   \
+        s5.y = v5.y + v7.x;                   \
+        s6.x = v4.x + v6.y;                   \
+        s6.y = v4.y - v6.x;                   \
+        s7.x = v5.x + v7.y;                   \
+        s7.y = v5.y - v7.x;                   \
+        t0.x = -s3.y;                         \
+        t0.y = s3.x;                          \
+        t1.x = M_SQRT1_2_F * (s5.x - s5.y);   \
+        t1.y = M_SQRT1_2_F * (s5.x + s5.y);   \
+        t2.x = -M_SQRT1_2_F * (s7.x + s7.y);  \
+        t2.y = M_SQRT1_2_F * (s7.x - s7.y);   \
+        c0   = s0 + s1;                       \
+        c1   = s6 - t2;                       \
+        c2   = s2 - t0;                       \
+        c3   = s4 - t1;                       \
+        c4   = s0 - s1;                       \
+        c5   = s6 + t2;                       \
+        c6   = s2 + t0;                       \
+        c7   = s4 + t1;                       \
+    }
+
+/** Computes the first stage of a radix-2 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_2_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load two complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data = vload4(0, (__global DATA_TYPE *)input.ptr);
+
+    // Compute DFT N = 2
+    DFT_2(data.s01, data.s23);
+
+    // Store two complex output values
+    vstore4(data, 0, (__global DATA_TYPE *)output.ptr);
+}
+
+/** Computes the first stage of a radix-2 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_2_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load two complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+
+    // Compute DFT N = 2
+    DFT_2(data1, data2);
+
+    // Store two complex output values
+    vstore2(data1, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+}
+
+/** Computes the first stage of a radix-3 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_3_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load three complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data0 = vload4(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2, 0, 0));
+
+    // Compute DFT N = 3
+    DFT_3(data0.s01, data0.s23, data1.s01);
+
+    // Store three complex output values
+    vstore4(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2, 0, 0));
+}
+
+/** Computes the first stage of a radix-3 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_3_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load three complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+
+    // Compute DFT N = 3
+    DFT_3(data0, data1, data2);
+
+    // Store three complex output values
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+}
+
+/** Computes the first stage of a radix-4 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_4_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load four complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data = vload8(0, (__global DATA_TYPE *)input.ptr);
+
+    // Compute DFT N = 4
+    DFT_4(data.s01, data.s23, data.s45, data.s67);
+
+    // Store four complex output values
+    vstore8(data, 0, (__global DATA_TYPE *)output.ptr);
+}
+
+/** Computes the first stage of a radix-4 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_4_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load four complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+
+    // Compute DFT N = 4
+    DFT_4(data0, data1, data2, data3);
+
+    // Store four complex output values
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+}
+
+/** Computes the first stage of a radix-5 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_5_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load five complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
+
+    // Compute DFT N = 5
+    DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01);
+
+    // Store five complex output values
+    vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
+}
+
+/** Computes the first stage of a radix-5 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_5_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load five complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
+
+    // Compute DFT N = 5
+    DFT_5(data0, data1, data2, data3, data4);
+
+    // Store five complex output values
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
+}
+
+/** Computes the first stage of a radix-7 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_7_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load seven complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data1 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6, 0, 0));
+
+    // Compute DFT N = 7
+    DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01);
+
+    // Store seven complex output values
+    vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore4(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6, 0, 0));
+}
+
+/** Computes the first stage of a radix-7 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_7_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load seven complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
+
+    // Compute DFT N = 7
+    DFT_7(data0, data1, data2, data3, data4, data5, data6);
+
+    // Store seven complex output values
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
+    vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
+    vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
+}
+
+/** Computes the first stage of a radix-8 DFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_8_first_stage_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load eight complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 16)
+    data = vload16(0, (__global DATA_TYPE *)input.ptr);
+
+    // Compute DFT N = 8
+    DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF);
+
+    // Store eight complex output values
+    vstore16(data, 0, (__global DATA_TYPE *)output.ptr);
+}
+
+/** Computes the first stage of a radix-8 DFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ */
+__kernel void fft_radix_8_first_stage_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+    // Load eight complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7, 0));
+
+    // Compute DFT N = 8
+    DFT_8(data0, data1, data2, data3, data4, data5, data6, data7);
+
+    // Store eight complex output values
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
+    vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
+    vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
+    vstore2(data7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7, 0));
+}
+
+/** Computes a stage of a radix-2 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_2_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-2
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load two complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+
+    // Compute DFT N = 2
+    DFT_2(c0, c1);
+
+    // Store two complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-2 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_2_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-2
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load two complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+
+    // Compute DFT N = 2
+    DFT_2(c0, c1);
+
+    // Store two complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+}
+
+/** Computes a stage of a radix-3 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_3_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-3
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load three complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+
+    // Compute DFT N = 3
+    DFT_3(c0, c1, c2);
+
+    // Store three complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-3 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_3_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-3
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load three complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+
+    // Compute DFT N = 3
+    DFT_3(c0, c1, c2);
+
+    // Store three complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+}
+
+/** Computes a stage of a radix-4 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_4_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-4
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load four complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+
+    // Compute DFT N = 4
+    DFT_4(c0, c1, c2, c3);
+
+    // Store four complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-4 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_4_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-4
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load four complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+
+    // Compute DFT N = 4
+    DFT_4(c0, c1, c2, c3);
+
+    // Store four complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+}
+
+/** Computes a stage of a radix-5 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_5_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-5
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load five complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+
+    // Compute DFT N = 5
+    DFT_5(c0, c1, c2, c3, c4);
+
+    // Store five complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-5 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_5_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-5
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load five complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+
+    // Compute DFT N = 5
+    DFT_5(c0, c1, c2, c3, c4);
+
+    // Store five complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+}
+
+/** Computes a stage of a radix-7 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_7_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-7
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load seven complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+    TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+    TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+
+    // Compute DFT N = 7
+    DFT_7(c0, c1, c2, c3, c4, c5, c6);
+
+    // Store seven complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-7 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_7_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-7
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load seven complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+    TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+    TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+
+    // Compute DFT N = 7
+    DFT_7(c0, c1, c2, c3, c4, c5, c6);
+
+    // Store seven complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
+}
+
+/** Computes a stage of a radix-8 FFT on axis 0.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_8_axis_0(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-8
+    uint kx = get_global_id(0);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load eight complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 7 * Nx, 0, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+    TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+    TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+    TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7);
+
+    // Compute DFT N = 8
+    DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
+
+    // Store eight complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+    vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 7 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-8 FFT on axis 1.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
+ * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes  The offset of the first element in the source tensor
+ * @param[out]    output_ptr                           (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in]     output_stride_x                      (Optional) Stride of the destination image in X dimension (in bytes)
+ * @param[in]     output_step_x                        (Optional) output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]     output_stride_y                      (Optional) Stride of the destination image in Y dimension (in bytes)
+ * @param[in]     output_step_y                        (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]     output_stride_z                      (Optional) Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
+ * @param[in]     Nx                                   The butterfly span. Products of radix order of previous radix's stage
+ * @param[in]     Ni                                   Nx * Ny.
+ * @param[in]     exp_const                            Exponent constant
+ */
+__kernel void fft_radix_8_axis_1(
+    TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+    ,
+    TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+    ,
+    uint Nx, uint Ni, float exp_const)
+{
+    // Each work-item computes a single radix-8
+    uint kx = get_global_id(1);
+
+    // Compute nx
+    uint nx = kx % Nx;
+
+    // Compute n index
+    uint n = nx + (kx / Nx) * Ni;
+
+    // Get tensor pointers
+    Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+    input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+    Tensor3D output = input;
+#else  /* IN_PLACE */
+    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+    output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+    // Load eight complex input values
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7 * Nx, 0));
+
+    // Compute phi
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
+
+    // Multiply by twiddle factor
+    TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+    TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+    TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+    TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+    TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+    TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+    TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7);
+
+    // Compute DFT N = 8
+    DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
+
+    // Store eight complex output values
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
+    vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7 * Nx, 0));
+}
+#endif // defined(DATA_TYPE)
\ No newline at end of file