blob: 10875293a9071c2823e1b4a5495accd91ce29d6d [file] [log] [blame]
/*
* Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#ifdef SATURATE
#define CONVERT_OP_FLOAT_STR(x, type, round) (convert_##type##_sat##round(x))
#else /* SATURATE */
#define CONVERT_OP_FLOAT_STR(x, type, round) (convert_##type##round(x))
#endif /* SATURATE */
#define CONVERT_OP_FLOAT(x, type, round) CONVERT_OP_FLOAT_STR(x, type, round)
#if defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT)
#if defined(ACTIVATION_TYPE)
#include "activation_float_helpers.h"
#endif // defined(ACTIVATION_TYPE)
#define VEC_ACC_TYPE VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE_OUT)
#define VEC_OUT_TYPE VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE_OUT)
#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE_OUT)
/** Performs a pixelwise multiplication with float scale of either integer or float inputs.
*
* @attention The inputs and output data types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT:
* e.g. -DDATA_TYPE_IN1=uchar -DDATA_TYPE_IN2=ushort -DDATA_TYPE_OUT=short
* @attention The data type of the intermediate result of the multiplication should passed as well using -DACC_DATA_TYPE.
* e.g. If one of inputs is S16 -DACC_DATA_TYPE=int should be passed else -DACC_DATA_TYPE=short.
* @attention -DDATA_TYPE_FLOAT must be passed if floating point inputs are provided.
*
* @param[in] in1_ptr Pointer to the source image. Supported data types: U8, S16, F16, F32
* @param[in] in1_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] in2_ptr Pointer to the source image. Supported data types: U8, S16, F16, F32
* @param[in] in2_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] out_ptr Pointer to the destination image. Supported data types: U8, S16, F16, F32
* @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
* @param[in] scale Float scaling factor. Supported data types: F32
*/
__kernel void pixelwise_mul_float(
TENSOR3D_DECLARATION(in1),
TENSOR3D_DECLARATION(in2),
#if !defined(IN_PLACE)
TENSOR3D_DECLARATION(out),
#endif // !defined(IN_PLACE)
const float scale)
{
// Get pixels pointer
size_t x = max((int)(get_global_id(0) * VEC_SIZE_OUT - (VEC_SIZE_OUT - VEC_SIZE_LEFTOVER) % VEC_SIZE_OUT), 0);
size_t y = get_global_id(1);
size_t z = get_global_id(2);
__global uchar *in1_addr = in1_ptr + in1_offset_first_element_in_bytes + x * in1_stride_x + y * in1_stride_y + z * in1_stride_z;
__global uchar *in2_addr = in2_ptr + in2_offset_first_element_in_bytes + x * in2_stride_x + y * in2_stride_y + z * in2_stride_z;
__global uchar *
#if !defined(IN_PLACE)
out_addr = out_ptr + out_offset_first_element_in_bytes + x * out_stride_x + y * out_stride_y + z * out_stride_z;
#else // !defined(IN_PLACE)
#if defined(SRC1_IN_PLACE)
out_addr = in1_addr;
#else //defined(SRC1_IN_PLACE)
out_addr = in2_addr;
#endif //defined(SRC1_IN_PLACE)
#endif // !defined(IN_PLACE)
// Load data
VEC_ACC_TYPE in1_data = CONVERT((VEC_DATA_TYPE(DATA_TYPE_IN1, VEC_SIZE_OUT))(VLOAD(VEC_SIZE_IN1)(0, (__global DATA_TYPE_IN1 *)in1_addr)), VEC_ACC_TYPE);
VEC_ACC_TYPE in2_data = CONVERT((VEC_DATA_TYPE(DATA_TYPE_IN2, VEC_SIZE_OUT))(VLOAD(VEC_SIZE_IN2)(0, (__global DATA_TYPE_IN2 *)in2_addr)), VEC_ACC_TYPE);
// Perform multiplication
#ifdef DATA_TYPE_FLOAT
VEC_OUT_TYPE res0 = CONVERT(in1_data * in2_data * (ACC_DATA_TYPE)scale, VEC_OUT_TYPE);
#else /* DATA_TYPE_FLOAT */
VEC_OUT_TYPE res0 = CONVERT_OP_FLOAT(CONVERT_OP_FLOAT((CONVERT(in1_data * in2_data, VEC_FLOAT) * scale), VEC_ACC_TYPE, ROUND), VEC_OUT_TYPE, ROUND);
#endif /* DATA_TYPE_FLOAT */
#if defined(ACTIVATION_TYPE)
res0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE_OUT, VEC_SIZE_OUT, res0, A_VAL, B_VAL);
#endif // defined(ACTIVATION_TYPE)
STORE_VECTOR_SELECT(res, DATA_TYPE_OUT, out_addr, VEC_SIZE_OUT, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT) */
#if defined(DATA_TYPE)
/** Performs a pixelwise multiplication of complex float values
*
* @param[in] in1_ptr Pointer to the source image. Supported data types: F16/F32
* @param[in] in1_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] in2_ptr Pointer to the source image. Supported data types: same as @p in1_ptr
* @param[in] in2_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes)
* @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in1_ptr
* @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes)
* @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void pixelwise_mul_complex(
TENSOR3D_DECLARATION(in1),
TENSOR3D_DECLARATION(in2),
TENSOR3D_DECLARATION(out))
{
// Get pixels pointer
Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1);
Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2);
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out);
// Load data
VEC_DATA_TYPE(DATA_TYPE, 2)
vin1 = vload2(0, (__global DATA_TYPE *)in1.ptr);
VEC_DATA_TYPE(DATA_TYPE, 2)
vin2 = vload2(0, (__global DATA_TYPE *)in2.ptr);
// Perform complex multiplication
VEC_DATA_TYPE(DATA_TYPE, 2)
res = { vin1.x *vin2.x - vin1.y * vin2.y, vin1.x *vin2.y + vin2.x * vin1.y };
#if defined(ACTIVATION_TYPE)
vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE_OUT, res, A_VAL, B_VAL), 0, (__global DATA_TYPE *)out.ptr);
#else // defined(ACTIVATION_TYPE)
// Store result
vstore2(res, 0, (__global DATA_TYPE *)out.ptr);
#endif // defined(ACTIVATION_TYPE)
}
#endif // defined(DATA_TYPE)