blob: 4aabd957cd35c977ab7c4743d65ff2f4563b562e [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "pool_common.hpp"
#include <stack>
#include <vector>
namespace arm_conv {
namespace pooling {
template <class strategy>
class PoolingDepthfirstCacheOblivious : public PoolingCommon<typename strategy::operand_type, typename strategy::return_type>
{
using TInput = typename strategy::operand_type;
using TOutput = typename strategy::return_type;
const PoolingArgs m_args; // Copy of arguments
constexpr static unsigned int input_rows(void)
{
return (strategy::out_rows() - 1)*strategy::stride_rows() + strategy::pool_rows();
}
constexpr static unsigned int input_cols(void)
{
return (strategy::out_cols() - 1)*strategy::stride_cols() + strategy::pool_cols();
}
size_t sizeof_input_buffer(void) const
{
return sizeof(TInput) * m_args.n_channels;
}
size_t sizeof_output_buffer(void) const
{
return sizeof(TOutput) * m_args.n_channels;
}
public:
PoolingDepthfirstCacheOblivious(const PoolingArgs &args) : m_args(args)
{
}
PoolingDepthfirstCacheOblivious(PoolingDepthfirstCacheOblivious &) = delete;
PoolingDepthfirstCacheOblivious &operator=(PoolingDepthfirstCacheOblivious &) = delete;
size_t get_working_size(void) const override
{
// We require an array of pointers for the inputs and outputs, a
// channel-length vector in which to dump surplus output, and a
// channel-length vector of padding values.
return sizeof_input_buffer() + sizeof_output_buffer();
}
void execute(
const void *const input,
void *const output,
void *const working_space
) const override
{
const size_t ld_input_col = m_args.n_channels;
const size_t ld_input_row = ld_input_col * m_args.input_cols;
const size_t ld_input_batch = ld_input_row * m_args.input_rows;
const size_t ld_output_col = ld_input_col;
const size_t ld_output_row = ld_output_col * m_args.output_cols;
const size_t ld_output_batch = ld_output_row * m_args.output_rows;
execute(
input, ld_input_col, ld_input_row, ld_input_batch,
output, ld_output_col, ld_output_row, ld_output_batch,
working_space
);
}
void execute(
const void *const input,
size_t ld_input_col,
size_t ld_input_row,
size_t ld_input_batch,
void *const output,
size_t ld_output_col,
size_t ld_output_row,
size_t ld_output_batch,
void *const working_space
) const override
{
execute(
m_args.n_batches, m_args.input_rows, m_args.input_cols,
m_args.n_channels,
input, ld_input_col, ld_input_row, ld_input_batch,
m_args.padding,
m_args.output_rows, m_args.output_cols,
output, ld_output_col, ld_output_row, ld_output_batch,
working_space
);
}
void execute(
unsigned int batches,
unsigned int input_height,
unsigned int input_width,
unsigned int channels,
const void *const _input,
size_t ld_input_col,
size_t ld_input_row,
size_t ld_input_batch,
const PaddingValues &padding,
unsigned int output_height,
unsigned int output_width,
void *const _output,
size_t ld_output_col,
size_t ld_output_row,
size_t ld_output_batch,
void *const _working_space
) const override
{
strategy strat(m_args.cpu_info);
#ifdef CYCLE_PROFILING
arm_gemm::profiler prof;
#endif // CYCLE_PROFILING
// Cast input and output pointers into the right types
const TInput *const inptr = static_cast<const TInput *>(_input);
TOutput *const outptr = static_cast<TOutput *>(_output);
// Allocate portions of the working space
uint8_t *const working_space = static_cast<uint8_t *>(_working_space);
TOutput *const output_buffer = reinterpret_cast<TOutput *>(working_space);
TInput *const input_buffer = reinterpret_cast<TInput *>(working_space + sizeof_output_buffer());
// Fill the input buffer
const TInput pad_value = (m_args.pool_type == PoolingType::AVERAGE)
? static_cast<TInput>(0)
: (std::numeric_limits<TInput>::has_infinity
? -std::numeric_limits<TInput>::infinity()
: std::numeric_limits<TInput>::lowest());
for (unsigned int i = 0; i < channels; i++)
{
input_buffer[i] = pad_value;
}
// Keep subdividing the output plane across the longest dimension until we
// reach the size of the tile. Queue items for later processing. Note - we
// can determine the largest size of the queue a priori from the input
// tensor size, this would allow us to allocate memory within the working
// space and improve performance.
struct WorkItem
{
unsigned int output_i, output_j;
unsigned int output_height, output_width;
WorkItem(unsigned int i, unsigned int j, unsigned int height, unsigned int width)
: output_i(i), output_j(j), output_height(height), output_width(width) {}
};
auto execute = [&] (const WorkItem &item) {
// Create an array for the output pointers
TOutput * _outptr_array[strategy::out_rows() * strategy::out_cols()];
TOutput **const outptr_array = _outptr_array;
// Construct the output pointer array
{
const auto output_pad_right = strategy::out_rows() - item.output_width;
auto outptr_element = outptr_array;
auto outptr_row = outptr + item.output_i * ld_output_row + item.output_j * ld_output_col;
// Fill the array with pointers to the output buffer
for (unsigned int i = 0; i < strategy::out_rows() * strategy::out_cols(); i++)
{
outptr_array[i] = output_buffer;
}
// Fill in the valid portion of the array
for (unsigned int i = 0; i < item.output_height; i++)
{
auto outptr_col = outptr_row;
for (unsigned int j = 0; j < item.output_width; j++)
{
*(outptr_element++) = outptr_col;
outptr_col += ld_output_col;
}
outptr_element += output_pad_right;
outptr_row += ld_output_row;
}
}
const int start_i = item.output_i * strategy::stride_rows() - padding.top;
const int end_i = start_i + input_rows();
const unsigned int pad_top = std::max(0, 0 - start_i);
const unsigned int pad_bottom = std::max(0, end_i - static_cast<int>(input_height));
const int start_j = item.output_j * strategy::stride_cols() - padding.left;
const int end_j = start_j + input_cols();
const unsigned int pad_left = std::max(0, 0 - start_j);
const unsigned int pad_right = std::max(0, end_j - static_cast<int>(input_width));
// Create an array for the input pointers
const TInput * _inptr_array[input_rows() * input_cols()];
const TInput **const inptr_array = _inptr_array;
{
const unsigned int row_padding = pad_top + pad_bottom;
const unsigned int valid_rows = input_rows() - row_padding;
const unsigned int col_padding = pad_left + pad_right;
const unsigned int valid_cols = input_cols() - col_padding;
// Fill the array with pointers to the input buffer
for (unsigned int i = 0; i < input_rows() * input_cols(); i++)
{
inptr_array[i] = input_buffer;
}
// Compute valid initial pointer
auto inptr_row = inptr + std::max(start_i, 0) * ld_input_row + std::max(start_j, 0) * ld_input_col;
// Fill in the valid portion of the input array
auto inptr_element = inptr_array + pad_top * input_cols() + pad_left;
for (unsigned int i = 0; i < valid_rows; i++)
{
auto inptr_col = inptr_row;
for (unsigned int j = 0; j < valid_cols; j++)
{
*(inptr_element++) = inptr_col;
inptr_col += ld_input_col;
}
inptr_row += ld_input_row;
inptr_element += col_padding; // Skip the padding elements
}
}
// Call the kernel
#ifdef CYCLE_PROFILING
// TODO Work number
auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long)(item.output_height * item.output_width * strategy::pool_rows() * strategy::pool_cols()));
#endif // CYCLE_PROFILING
strat.kernel(channels, inptr_array, outptr_array,
pad_left, pad_top, pad_right, pad_bottom);
};
// Add the initial work item to the stack of work.
std::stack<WorkItem, std::vector<WorkItem>> stack;
stack.push(WorkItem(0, 0, output_height, output_width));
while (!stack.empty())
{
// Pop an item from the stack, bisect the largest dimension and either
// execute the resulting tiles or add them to the stack if they are too
// large.
const WorkItem item(stack.top());
stack.pop();
if (item.output_height <= strategy::out_rows() &&
item.output_width <= strategy::out_cols())
{
execute(item);
}
else
{
// Split the largest dimension, such that we get an exact number of
// tiles in the first partition.
if (item.output_height >= item.output_width)
{
const unsigned int height_in_tiles = (item.output_height + strategy::out_rows() - 1) / strategy::out_rows();
const unsigned int tiles_first = height_in_tiles - height_in_tiles / 2;
const unsigned int height_first = tiles_first * strategy::out_rows();
const unsigned int height_second = item.output_height - height_first;
stack.push(WorkItem(item.output_i + height_first, item.output_j, height_second, item.output_width));
stack.push(WorkItem(item.output_i, item.output_j, height_first, item.output_width));
}
else
{
const unsigned int width_in_tiles = item.output_width / strategy::out_cols();
const unsigned int tiles_first = width_in_tiles - width_in_tiles / 2;
const unsigned int width_first = tiles_first * strategy::out_cols();
const unsigned int width_second = item.output_width - width_first;
stack.push(WorkItem(item.output_i, item.output_j + width_first, item.output_height, width_second));
stack.push(WorkItem(item.output_i, item.output_j, item.output_height, width_first));
}
}
}
}
};
} // namespace pooling
} // namespace arm_conv