blob: b71f390ab9dbf0ed4de87966332d7fe3055f74fe [file] [log] [blame]
/*
* Copyright (c) 2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "arm_gemm.hpp"
#include "utils.hpp"
#include "mergeresults.hpp"
#include "transform.hpp"
#ifdef CYCLE_PROFILING
#include "profiler.hpp"
#endif
#include <algorithm>
#include <cassert>
#include <cmath>
// Some macros used to decide how much working space to allocate.
// Round allocations up to the next cache line.
#define ALLOC_ROUND 64
#define ROUND_UP(x) ((((x) + ALLOC_ROUND-1) / ALLOC_ROUND) * ALLOC_ROUND)
// Implementation of the GemmCommon abstract class.
//
// This implementation interleaves the source matrices in blocks - good for
// larger matrices.
namespace arm_gemm {
template<typename strategy, typename To, typename Tr>
class GemmInterleavedPretransposed2d : public GemmCommon<To, Tr> {
typedef typename strategy::operand_type Toi;
typedef typename strategy::result_type Tri;
/* const properties set by constructor */
const CPUInfo * const _ci;
const unsigned int _Msize;
const unsigned int _Nsize;
const unsigned int _Ksize;
const unsigned int _nbatches;
const unsigned int _nmulti;
const Activation _act;
const int _maxthreads;
int _nthreads;
/* Blocking info */
unsigned int _k_block=0;
unsigned int _x_block=0;
unsigned int _Mround_div=0;
unsigned int _Mround=0;
unsigned int _Nround_div=0;
unsigned int _Nround=0;
/* Working space, pretransposed buffer */
const Toi *_B_transposed=nullptr;
void *_working_space=nullptr;
/* We will need to walk through the blocks of B in a few contexts, so
* factor that out. */
class blockwalker {
private:
/* Size loops, etc. based on our parent's configuration */
const GemmInterleavedPretransposed2d<strategy, To, Tr> &_parent;
/* K, X and multi parameters for current iteration. */
unsigned int _k0=0, _x0=0, _xmin=0, _xmax=0, _multi=0;
unsigned int _index=0;
bool _done=false;
bool _newkblock=true;
bool _newmulti=true;
public:
blockwalker(const GemmInterleavedPretransposed2d<strategy, To, Tr> &parent)
: _parent(parent)
, _xmax { parent._Nsize }
{ }
blockwalker(const GemmInterleavedPretransposed2d<strategy, To, Tr> &parent, unsigned int x0, unsigned int xmax)
: _parent(parent)
, _x0 { x0 }
, _xmin { x0 }
, _xmax { xmax }
{
assert(_x0 <= _xmax);
}
unsigned int xmax() {
return std::min(_x0 + _parent._x_block, _xmax);
}
unsigned int kmax() {
return std::min(_k0 + _parent._k_block, _parent._Ksize);
}
/* Advance to the next block, return false at the end. */
bool advance(void) {
if (_done) {
return false;
}
_newkblock=false;
_x0 += _parent._x_block;
if (_x0 >= _xmax) {
_x0=_xmin;
_k0 += _parent._k_block;
if (_k0 >= _parent._Ksize) {
_k0=0;
_multi++;
if (_multi >= _parent._nmulti) {
_done=true;
return false;
}
_newmulti=true;
}
_newkblock=true;
}
_index++;
return true;
}
unsigned int k0(void) { return _k0; }
unsigned int x0(void) { return _x0; }
unsigned int multi(void) { return _multi; }
unsigned int index(void) { return _index; }
bool done(void) { return _done; }
bool newkblock(void) { return _newkblock; }
};
// A working size: One of these needed, regardless of thread count. Divided according to window.
size_t get_a_working_size() const {
return ROUND_UP(sizeof(Toi) * _k_block * _Mround * _nbatches) * 2;
}
// As B will be pretranspose we do not need to alloc any space for it
size_t get_b_working_size() const {
return 0;
}
// C working size: One needed per thread.
size_t get_c_working_size() const {
return ROUND_UP(sizeof(Tri) * _x_block * strategy::out_height());
}
// Internal execute function.
// This supports both the "pretransposed" and "standard" interfaces via the template parameter.
void execute_pretranspose(unsigned int m_start, unsigned int m_end, unsigned int n_start, unsigned int n_end, int threadid, int, int) {
/* Make sure we've been set up correctly. */
assert(_B_transposed);
assert(_working_space);
assert(this->_Aptr);
assert(this->_Cptr);
#ifdef CYCLE_PROFILING
profiler prof;
#endif
strategy strat(_ci);
/* Translate 'start' and 'end' into a position within the batches and rows. */
const unsigned int window_per_batch = _Mround / strategy::out_height();
unsigned int batch_0 = m_start / window_per_batch;
unsigned int batch_end = m_end / window_per_batch;
/* Compute the M values to operate on */
unsigned int m_0 = (m_start - (batch_0 * window_per_batch)) * strategy::out_height();
unsigned int m_max = (m_end - (batch_end * window_per_batch)) * strategy::out_height();
unsigned int n_0 = std::min(this->_Nsize, strategy::out_width() * n_start);
unsigned int n_max = std::min(this->_Nsize, strategy::out_width() * n_end);
blockwalker current(*this, n_0, n_max);
int8_t *working_space_bytes = reinterpret_cast<int8_t *>(_working_space);
auto c_panel_start = working_space_bytes;
auto a_panel_start = c_panel_start + get_c_working_size() * _maxthreads;
auto c_panel = reinterpret_cast<Tri *>(c_panel_start + get_c_working_size() * threadid);
auto a_panel = reinterpret_cast<Toi *>(a_panel_start + get_a_working_size() * threadid);
/* B^t is stored in interleaved panels separated by their K-block component
* we want to store a pointer to the start of the current k-page
* then when we come to the next k-block we just add the size of the previous to
* this base pointer
*/
const Toi *b_panel_start = _B_transposed;
// b_panels stores a pointer to the start of our current block inside of the k-block
const Toi *b_panel = b_panel_start;
// newkblock() is always true on the first iteration, so this will be set properly on the first loop.
unsigned b_page_size = 0;
int kern_k = 0;
for (;!current.done();current.advance()) {
int bblocks = iceildiv(current.xmax() - current.x0(), strategy::out_width());
if (current.newkblock()) {
kern_k = iceildiv(current.kmax() - current.k0(), strategy::k_unroll());
kern_k *= strat.k_unroll();
unsigned b_thread_start_offset = iceildiv(current.x0(), strategy::out_width());
b_panel_start += b_page_size;
b_panel = b_panel_start + (b_thread_start_offset * strat.out_width() * kern_k);
b_page_size = _Nround * kern_k;
for (unsigned int batch = batch_0; batch <= batch_end; batch++) {
unsigned int first_m = (batch == batch_0) ? m_0 : 0;
unsigned int last_m = (batch == batch_end) ? m_max : _Msize;
if (first_m >= last_m)
continue;
auto a_thread_panel_in = this->_Aptr
+ (batch * this->_A_batch_stride)
+ (current.multi() * this->_A_multi_stride);
auto a_thread_panel_out = a_panel + ((batch * _Mround + first_m) * _k_block);
strat.transforms.PrepareA(
a_thread_panel_out,
a_thread_panel_in,
this->_lda,
first_m,
last_m,
current.k0(),
current.kmax(),
0);
}
}
/* Do the actual work. */
for (unsigned int batch = batch_0; batch <= batch_end; batch++) {
unsigned int first_m = (batch == batch_0) ? m_0 : 0;
unsigned int last_m = (batch == batch_end) ? m_max : _Msize;
const Toi *a_ptr = a_panel + (batch * _Mround + first_m) * _k_block;
if (first_m >= last_m)
continue;
for (unsigned int y=first_m; y<last_m; y+=strategy::out_height()) {
unsigned int ymax = std::min(_Msize, y + strategy::out_height());
strat.kernel(a_ptr, b_panel, c_panel, 1, bblocks, kern_k);
a_ptr += (strategy::out_height() * kern_k);
/* Only activate on last pass, only add bias on first pass, ask for accumulation on any non-first pass */
const bool first_pass = current.k0()==0;
const bool last_pass = current.kmax()==_Ksize;
auto c_panel_out = this->_Cptr
+ this->_C_batch_stride * batch
+ this->_C_multi_stride * current.multi();
auto bias = (first_pass && this->_bias)
? this->_bias + (current.multi() * this->_bias_multi_stride)
: nullptr;
auto act = last_pass ? _act : Activation();
strat.transforms.Merge(
c_panel_out,
c_panel,
this->_ldc,
y,
ymax,
current.x0(),
current.xmax(),
bias,
act,
!first_pass); //Append
}
}
b_panel += (bblocks * strat.out_width() * kern_k);
}
}
static unsigned int get_k_block_size(const GemmArgs &args) {
// Work out blocking parameters, or override from provided GemmConfig
if (args._cfg && args._cfg->inner_block_size) {
return args._cfg->inner_block_size;
}
const unsigned int L1_size = args._ci->get_L1_cache_size();
unsigned int k_block;
// k_block: Find out how much of the larger array can be loaded into half the cache.
// This should account for associative caches.
k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
// Needs to be (at least a single) multiple of the K unroll level.
k_block /= strategy::k_unroll();
k_block = std::max(k_block, 1U) * strategy::k_unroll();
// Now tune to presented problem size; this is how many blocks we need.
unsigned int numk_blocks = iceildiv(args._Ksize, k_block);
// So divide the space equally into that many blocks.
k_block = iceildiv(args._Ksize, numk_blocks);
// And round UP to the K unroll level required.
k_block = iceildiv(k_block, strategy::k_unroll());
k_block *= strategy::k_unroll();
return k_block;
}
public:
GemmInterleavedPretransposed2d(GemmInterleavedPretransposed2d &) = delete;
GemmInterleavedPretransposed2d & operator= (GemmInterleavedPretransposed2d &) = delete;
/* Constructor */
GemmInterleavedPretransposed2d(const GemmArgs &args)
: _ci(args._ci)
, _Msize(args._Msize)
, _Nsize(args._Nsize)
, _Ksize(args._Ksize)
, _nbatches(args._nbatches)
, _nmulti(args._nmulti)
, _act(args._act)
, _maxthreads(args._maxthreads)
, _nthreads(args._maxthreads)
, _k_block(get_k_block_size(args))
// Work out the rounded size of M - needed for some buffers.
, _Mround_div ( iceildiv(_Msize, strategy::out_height()) )
, _Mround ( _Mround_div * strategy::out_height() )
, _Nround_div ( iceildiv(_Nsize, strategy::out_width()) )
, _Nround ( _Nround_div * strategy::out_width() )
{
assert(_maxthreads > 0);
const unsigned int L2_size = _ci->get_L2_cache_size();
if (args._cfg && args._cfg->outer_block_size) {
_x_block = args._cfg->outer_block_size;
} else {
// x_block: Work out how many rows (of length k_block) will fit in the L2
// Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
_x_block = (((L2_size * 9) / 10) - (_k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
(sizeof(Toi) * _k_block);
// Needs to be (at least a single) multiple of the kernel output width.
_x_block /= strategy::out_width();
_x_block = std::max(_x_block, 1U) * strategy::out_width();
// And tune to the presented problem size.
unsigned int num_x_blocks = iceildiv(_Nsize, _x_block);
_x_block = iceildiv(_Nsize, num_x_blocks);
_x_block = iceildiv(_x_block, strategy::out_width());
_x_block *= strategy::out_width();
}
}
// Interface implementation - Compulsory functions
ndrange_t get_window_size() const override {
unsigned m = (_Mround / strategy::out_height()) * _nbatches;
unsigned n = _Nround_div;
return { m, n };
}
bool supports_dynamic_scheduling() const override {
return true;
}
// set_nthreads: pass on to buffer manager to avoid it waiting for non-existant threads.
void set_nthreads(int nthreads) override {
_nthreads = std::min(nthreads, _maxthreads);
}
void execute(const ndcoord_t& work_range, const ndcoord_t& thread_locator, int threadid) override {
/* This particular GEMM implementation can only be broken up over the M & N
* dimensions, we inform the frame work of this limitation via the get_window_size function
*/
const auto m_start = work_range.get_position(0);
const auto n_start = work_range.get_position(1);
const auto m_size = work_range.get_size(0);
const auto n_size = work_range.get_size(1);
const auto m_end = m_start + m_size;
const auto n_end = n_start + n_size;
const auto m_threadid = thread_locator.get_position(0);
const auto n_threadid = thread_locator.get_position(1);
execute_pretranspose(m_start, m_end, n_start, n_end, threadid, m_threadid, n_threadid);
}
std::size_t get_working_size() const override {
/* Because we do not know how schedular will break up
* the task, we need to ensure that alloc enough
* space to be able to handle the case where every thread
* is parallelised across B AND also every thrread is parallelised across A
*
* If we parallelise across A, then we only need one buffer of A and 64 buffers of B
* If we parallelise across B, then we only need 64 buffer of B and
*/
return get_c_working_size() * _maxthreads
+ get_a_working_size() * _maxthreads
+ 64; //to account for cacheline alignment
}
void set_working_space(void *working_space) override {
// Make sure everything ends up cache line aligned
int8_t *working_space_bytes = reinterpret_cast<int8_t *>(working_space);
intptr_t working_space_int = reinterpret_cast<intptr_t>(working_space);
size_t diff=0;
if (working_space_int & 0x3F) {
diff = 0x40 - (working_space_int & 0x3F);
}
working_space_bytes += diff;
_working_space = reinterpret_cast<void *>(working_space_bytes);
}
// Interface implementation - pretransposed
bool B_is_pretransposed() const override {
return true;
}
bool B_pretranspose_required() const override {
return _B_transposed==nullptr;
}
// TODO: this could almost certainly be considerably simpler.
size_t get_B_pretransposed_array_size() const override {
size_t total=0;
blockwalker current(*this);
do {
/* Figure out the size of each block. */
unsigned int x_size = (current.xmax() - current.x0());
unsigned int k_size = (current.kmax() - current.k0());
/* Round sizes up as needed. */
x_size = iceildiv(x_size, strategy::out_width());
x_size *= strategy::out_width();
k_size = iceildiv(k_size, strategy::k_unroll());
k_size *= strategy::k_unroll();
total += x_size * k_size * sizeof(Toi);
} while (current.advance());
return total;
}
void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
blockwalker current(*this);
Toi *buffer = reinterpret_cast<Toi *>(in_buffer);
_B_transposed = buffer;
strategy strat(_ci);
do {
/* Figure out the size of each block. */
unsigned int x_size = (current.xmax() - current.x0());
unsigned int k_size = (current.kmax() - current.k0());
/* Round sizes up as needed. */
x_size = iceildiv(x_size, strategy::out_width());
x_size *= strategy::out_width();
k_size = iceildiv(k_size, strategy::k_unroll());
k_size *= strategy::k_unroll();
strat.transforms.PrepareB(buffer, B + (current.multi() * B_multi_stride), ldb,
current.x0(), current.xmax(), current.k0(), current.kmax());
buffer += (x_size * k_size);
} while (current.advance());
}
void set_pretransposed_B_data(void *in_buffer) override {
_B_transposed = reinterpret_cast<Toi *>(in_buffer);
}
// Estimate cycles for given problem given provided parameters
static uint64_t estimate_cycles(const GemmArgs &args, const PerformanceParameters &params) {
unsigned int k_blocks = iceildiv(args._Ksize, get_k_block_size(args));
unsigned int m_blocks = iceildiv(args._Msize, strategy::out_height()) * args._nbatches;
unsigned int n_blocks = iceildiv(args._Nsize, strategy::out_width());
uint64_t total_macs = static_cast<uint64_t>(args._nbatches) * args._nmulti * roundup(args._Msize, strategy::out_height()) * roundup(args._Nsize, strategy::out_width()) * roundup(args._Ksize, strategy::k_unroll());
uint64_t prepare_bytes = static_cast<uint64_t>(args._nbatches) * args._nmulti * roundup(args._Msize, strategy::out_height()) * roundup(args._Ksize, strategy::k_unroll()) * sizeof(Toi);
uint64_t merge_bytes = static_cast<uint64_t>(args._nbatches) * args._nmulti * k_blocks * roundup(args._Msize, strategy::out_height()) * roundup(args._Nsize, strategy::out_width()) * sizeof(Tr);
// Wide problems incur extra preparation cost, as it is done per thread.
// Duplicate the logic the scheduler will later use to figure out how much that will affect us
float ratio = m_blocks / static_cast<float>(n_blocks);
unsigned int ideal_height = static_cast<unsigned int>(std::sqrt(args._maxthreads * ratio) + 0.5);
unsigned int height = 1;
if (ideal_height == 0) {
height = 1;
} else {
for (unsigned int adj=0; adj<ideal_height; adj++) {
const unsigned int round_down = ideal_height - adj;
if (args._maxthreads % round_down == 0) {
height = round_down;
break;
}
const unsigned int round_up = ideal_height + adj;
if (args._maxthreads % round_up == 0) {
height = round_up;
break;
}
}
}
// We've computed the height here - we need to multiply the amount of preparation effort by the width (which is total threads / height)
prepare_bytes *= (args._maxthreads / height);
float mac_cycles = static_cast<float>(total_macs) / params.kernel_macs_cycle;
float prepare_cycles = static_cast<float>(prepare_bytes) / params.prepare_bytes_cycle;
float merge_cycles = static_cast<float>(merge_bytes) / params.merge_bytes_cycle;
float total_cycles = mac_cycles + prepare_cycles + merge_cycles;
// We can't thread over multis, which might be a problem in some
// threaded cases. Penalize that here.
float parallelism_available = static_cast<float>(iceildiv(args._Msize, strategy::out_height()) * args._nbatches * iceildiv(args._Nsize, strategy::out_width())) * 0.9;
if (parallelism_available < args._maxthreads) {
total_cycles *= (static_cast<float>(args._maxthreads) / parallelism_available);
}
return static_cast<uint64_t>(total_cycles);
}
};
} // namespace arm_gemm