Move CPU/GPU files from Core/Runtime to the respective backend folders

Legacy structure contained two libraries core/runtime with two backends
in each.
We reduce the core/runtime libraries to a single library thus merging
the backend files

Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com>
Change-Id: I69545765fe7a730368105cdbd067d3135ec7a174
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6155
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/cpu/operators/CpuFullyConnected.cpp b/src/cpu/operators/CpuFullyConnected.cpp
new file mode 100644
index 0000000..cafb348
--- /dev/null
+++ b/src/cpu/operators/CpuFullyConnected.cpp
@@ -0,0 +1,496 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/operators/CpuFullyConnected.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensorPack.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/cpu/kernels/CpuTransposeKernel.h"
+#include "src/cpu/operators/CpuConvertFullyConnectedWeights.h"
+#include "src/cpu/operators/CpuFlatten.h"
+#include "src/cpu/operators/CpuGemm.h"
+#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
+#include "src/cpu/utils/CpuAuxTensorHandler.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+using namespace arm_compute::experimental;
+using namespace arm_compute::misc::shape_calculator;
+
+namespace
+{
+// Get min, max bound of a quantized asymmetric dst tensor, with the effect of fused activation
+std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
+{
+    PixelValue type_min{};
+    PixelValue type_max{};
+    std::tie(type_min, type_max) = get_min_max(data_type);
+    const UniformQuantizationInfo q_unif = q_info.uniform();
+
+    if(act_info.enabled())
+    {
+        switch(act_info.activation())
+        {
+            case ActivationLayerInfo::ActivationFunction::RELU:
+                type_min = PixelValue(q_unif.offset);
+                break;
+            case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
+                type_min = PixelValue(q_unif.offset);
+                type_max = PixelValue(act_info.a(), data_type, q_info);
+                break;
+            case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
+                type_min = PixelValue(act_info.b(), data_type, q_info);
+                type_max = PixelValue(act_info.a(), data_type, q_info);
+                break;
+            default:
+                ARM_COMPUTE_ERROR("Activation function not supported.");
+                break;
+        }
+    }
+
+    return std::make_pair(type_min, type_max);
+}
+
+Status get_gemmlowp_output_stage_info(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const ActivationLayerInfo &act,
+                                      GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
+{
+    const auto                    data_type = src->data_type();
+    const QuantizationInfo        oq_info   = dst->quantization_info();
+    const UniformQuantizationInfo iq_unif   = src->quantization_info().uniform();
+    const UniformQuantizationInfo wq_unif   = weights->quantization_info().uniform();
+    const UniformQuantizationInfo oq_unif   = oq_info.uniform();
+
+    float   multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
+    int32_t output_multiplier;
+    int32_t output_shift;
+
+    ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
+
+    PixelValue type_min{};
+    PixelValue type_max{};
+    std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
+
+    gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
+    gemmlowp_output_stage_info.gemmlowp_shift      = output_shift;
+    gemmlowp_output_stage_info.gemmlowp_offset     = oq_unif.offset;
+    gemmlowp_output_stage_info.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+    gemmlowp_output_stage_info.gemmlowp_min_bound  = type_min.get<int32_t>();
+    gemmlowp_output_stage_info.gemmlowp_max_bound  = type_max.get<int32_t>();
+
+    return Status{};
+}
+
+Status validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+    if(is_data_type_quantized_asymmetric(src->data_type()))
+    {
+        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+        // Extract and negate src and weights offset
+        const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
+        const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
+
+        GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
+        ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(src, weights, dst, act, gemmlowp_output_stage_info));
+
+        GEMMInfo gemm_info;
+        gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
+
+        // Validate gemmlowp function
+        TensorInfo src_info     = src->clone()->set_quantization_info(src_quantization_info);
+        TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuGemmLowpMatrixMultiplyCore::validate(&src_info,
+                                                                            &weights_info,
+                                                                            biases,
+                                                                            dst,
+                                                                            gemm_info));
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuGemm::validate(src, weights, biases, dst, 1.f, 1.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
+    }
+
+    return Status{};
+}
+} // namespace
+
+CpuFullyConnected::CpuFullyConnected()
+    : _flatten(nullptr),
+      _convert_weights(nullptr),
+      _transpose_weights(nullptr),
+      _mm_gemm(nullptr),
+      _mm_gemmlowp(nullptr),
+      _flattened_src(),
+      _converted_weights(),
+      _reshaped_weights(),
+      _trans_weights(),
+      _trans_weights_idx(AuxTensorIdx::Count),
+      _aux_mem(Count),
+      _needs_weights_conversion(false),
+      _needs_weights_reshape(false),
+      _is_fc_after_conv(false),
+      _is_quantized_asymmetric(false),
+      _is_prepared(false)
+
+{
+}
+
+CpuFullyConnected::~CpuFullyConnected() = default;
+
+void CpuFullyConnected::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+    if(_is_quantized_asymmetric)
+    {
+        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+        // Extract and negate src and weights offset
+        const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
+        const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
+
+        TensorInfo src_info     = src->clone()->set_quantization_info(src_quantization_info);
+        TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
+
+        // Configure gemmlowp function and output stage for asymmetric quantized types
+        GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
+        const Status            status = get_gemmlowp_output_stage_info(&src_info, &weights_info, dst, act, gemmlowp_output_stage_info);
+        ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
+
+        GEMMInfo gemm_info;
+        gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
+        gemm_info.set_activation_info(act);
+        _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
+        _mm_gemmlowp->configure(&src_info, &weights_info, biases, dst, gemm_info);
+    }
+    else
+    {
+        // Configure matrix multiply kernel
+        GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
+        gemm_info.set_activation_info(act);
+        _mm_gemm = std::make_unique<CpuGemm>();
+        _mm_gemm->configure(src, weights, biases, dst, 1.f, 1.0f, gemm_info);
+    }
+}
+
+void CpuFullyConnected::configure_conv_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+    ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+    // If the fully connected layer is called after a convolution layer, the src tensor must be linearized
+
+    // Initialize output tensor for flatten
+    auto_init_if_empty(_flattened_src, src->clone()->set_tensor_shape(compute_flatten_shape(src)));
+
+    _flatten = std::make_unique<CpuFlatten>();
+    _flatten->configure(src, &_flattened_src);
+
+    // Configure matrix multiply kernel
+    configure_mm(&_flattened_src, weights, biases, dst, act);
+}
+
+void CpuFullyConnected::configure_fc_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+    ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
+
+    // Configure matrix multiply kernel
+    configure_mm(src, weights, biases, dst, act);
+}
+
+void CpuFullyConnected::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
+                                  FullyConnectedLayerInfo fc_info)
+{
+    // Perform validate step
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(CpuFullyConnected::validate(src,
+                                                           weights,
+                                                           biases != nullptr ? biases : nullptr,
+                                                           dst,
+                                                           fc_info));
+
+    _needs_weights_conversion = false;
+    _needs_weights_reshape    = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
+    _needs_weights_reshape    = _needs_weights_reshape && !fc_info.retain_internal_weights;
+    _is_fc_after_conv         = true;
+    _is_quantized_asymmetric  = is_data_type_quantized_asymmetric(src->data_type());
+    _is_prepared              = false;
+    _trans_weights_idx        = AuxTensorIdx::Count;
+
+    // With the Fully Connected layer we can have 4 different cases:
+    //  1) Convolution layer -> Fully Connected layer without batches
+    //  2) Fully Connected layer -> Fully Connected layer without batches
+    //  3) Convolution layer -> Fully Connected layer with batches
+    //  4) Fully Connected layer -> Fully Connected layer with batches
+
+    const ITensorInfo *weights_to_use = weights;
+
+    // Check if we have a fully connected layer with batches
+    const bool is_batched_fc_layer = dst->dimension(1) > 1;
+    if(is_batched_fc_layer)
+    {
+        _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+                                                                                  src->tensor_shape().cend(),
+                                                                                  dst->tensor_shape().cbegin() + 1));
+    }
+    else
+    {
+        _is_fc_after_conv = src->num_dimensions() > 1;
+    }
+
+    // Reshape weights if needed
+    if(_needs_weights_reshape)
+    {
+        // Reshape the weights
+        _transpose_weights = std::make_unique<kernels::CpuTransposeKernel>();
+        _transpose_weights->configure(weights, &_reshaped_weights);
+        weights_to_use     = &_reshaped_weights;
+        _trans_weights_idx = AuxTensorIdx::TransposedWeights;
+    }
+
+    // Convert weights if needed
+    if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+    {
+        // Convert weights
+        _convert_weights = std::make_unique<CpuConvertFullyConnectedWeights>();
+        _convert_weights->configure(weights_to_use,
+                                    &_converted_weights,
+                                    src->tensor_shape(),
+                                    fc_info.weights_trained_layout);
+
+        weights_to_use            = &_converted_weights;
+        _needs_weights_conversion = true;
+        _trans_weights_idx        = AuxTensorIdx::ConvertedWeights;
+    }
+
+    if(_is_fc_after_conv)
+    {
+        // Fully Connected layer after a Convolution Layer without batches
+        configure_conv_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
+    }
+    else
+    {
+        // Fully Connected layer after a Fully Connected Layer without batches
+        configure_fc_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
+    }
+
+    // Retain the tensorinfo with the weights to use
+    if(_needs_weights_reshape || _needs_weights_conversion)
+    {
+        _trans_weights = *weights_to_use;
+    }
+
+    // Set auxiliary memory requirements
+    auto gemm_mem_req = (_is_quantized_asymmetric) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
+    for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
+    {
+        _aux_mem[i] = gemm_mem_req[i];
+    }
+
+    if(_aux_mem[Pretranspose].size > 0)
+    {
+        // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
+        _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
+        _aux_mem[ConvertedWeights]  = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
+    }
+    else
+    {
+        _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), _needs_weights_conversion ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _reshaped_weights.total_size());
+        _aux_mem[ConvertedWeights]  = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Persistent, _converted_weights.total_size());
+    }
+    _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
+}
+
+Status CpuFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
+                                   FullyConnectedLayerInfo fc_info)
+{
+    ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
+    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(biases != nullptr && biases->num_dimensions() > 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
+                                && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!fc_info.constant_weights, "Non-constant weights are currently not supported");
+
+    bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
+    bool is_fc_after_conv = true;
+
+    const ITensorInfo &flatten_src       = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)));
+    const ITensorInfo &reshaped_weights  = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
+    const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
+
+    // With the Fully Connected layer we can have 4 different cases:
+    //  1) Convolution layer -> Fully Connected layer without batches
+    //  2) Fully Connected layer -> Fully Connected layer without batches
+    //  3) Convolution layer -> Fully Connected layer with batches
+    //  4) Fully Connected layer -> Fully Connected layer with batches
+
+    const ITensorInfo *src_to_use     = src;
+    const ITensorInfo *weights_to_use = weights;
+
+    // Check if we have a fully connected layer with batches
+    const bool is_batched_fc_layer = dst->dimension(1) > 1;
+
+    if(is_batched_fc_layer)
+    {
+        is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+                                                                                 src->tensor_shape().cend(),
+                                                                                 dst->tensor_shape().cbegin() + 1));
+    }
+    else
+    {
+        is_fc_after_conv = src->num_dimensions() > 1;
+    }
+
+    if(!weights_reshaped)
+    {
+        // Validate reshape weights kernel
+        ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuTransposeKernel::validate(weights, &reshaped_weights));
+        weights_to_use = &reshaped_weights;
+    }
+
+    if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+    {
+        // Validate convert weights kernel
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuConvertFullyConnectedWeights::validate(weights_to_use,
+                                                                              &converted_weights,
+                                                                              src->tensor_shape(),
+                                                                              fc_info.weights_trained_layout));
+        weights_to_use = &converted_weights;
+    }
+
+    if(is_fc_after_conv)
+    {
+        // Fully Connected layer after a Convolution Layer without batches
+        ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+        // Validate flatten kernel
+        ARM_COMPUTE_RETURN_ON_ERROR(CpuFlatten::validate(src, &flatten_src));
+        src_to_use = &flatten_src;
+    }
+    else
+    {
+        // Fully Connected layer after a Fully Connected Layer without batches
+        ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
+    }
+    // Validate matrix multiply kernel
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(src_to_use, weights_to_use, biases, dst, fc_info.activation_info));
+
+    return Status{};
+}
+
+void CpuFullyConnected::run(ITensorPack &tensors)
+{
+    prepare(tensors);
+
+    auto src = tensors.get_const_tensor(ACL_SRC_0);
+
+    CpuAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
+    CpuAuxTensorHandler transformed_wei(offset_int_vec(_trans_weights_idx), _trans_weights, tensors, false);
+
+    // Linearize src if it comes from a convolutional layer
+    if(_is_fc_after_conv)
+    {
+        ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
+        _flatten->run(flatten_pack);
+    }
+
+    ITensorPack gemm_pack = tensors;
+    gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
+    if(_needs_weights_reshape || _needs_weights_conversion)
+    {
+        gemm_pack.add_const_tensor(ACL_SRC_1, transformed_wei.get());
+    }
+
+    // Run matrix multiply
+    if(_is_quantized_asymmetric)
+    {
+        _mm_gemmlowp->run(gemm_pack);
+    }
+    else
+    {
+        _mm_gemm->run(gemm_pack);
+    }
+}
+
+void CpuFullyConnected::prepare(ITensorPack &tensors)
+{
+    if(!_is_prepared)
+    {
+        auto weights = tensors.get_const_tensor(ACL_SRC_1);
+
+        CpuAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
+        CpuAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
+
+        // Pointer to current weights
+        const ITensor *cur_weights = weights;
+
+        // Reshape of the weights (happens only once)
+        if(_needs_weights_reshape)
+        {
+            // Run reshape weights kernel and mark weights as unused
+            ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
+            NEScheduler::get().schedule_op(_transpose_weights.get(), Window::DimY, _transpose_weights->window(), transpose_pack);
+
+            cur_weights->mark_as_unused();
+            cur_weights = reshaped_weights.get();
+        }
+
+        // Convert weights if needed (happens only once)
+        if(_needs_weights_conversion)
+        {
+            ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
+            _convert_weights->run(convert_pack);
+
+            cur_weights->mark_as_unused();
+            cur_weights = converted_weights.get();
+        }
+
+        ITensorPack gemm_pack = tensors;
+        gemm_pack.add_const_tensor(ACL_SRC_1, cur_weights);
+
+        // Prepare GEMM prepare and release unused weights
+        if(!_is_quantized_asymmetric)
+        {
+            _mm_gemm->prepare(gemm_pack);
+        }
+        else
+        {
+            _mm_gemmlowp->prepare(gemm_pack);
+        }
+
+        _is_prepared = true;
+    }
+}
+
+experimental::MemoryRequirements CpuFullyConnected::workspace() const
+{
+    return _aux_mem;
+}
+} // namespace cpu
+} // namespace arm_compute