Move CPU/GPU files from Core/Runtime to the respective backend folders

Legacy structure contained two libraries core/runtime with two backends
in each.
We reduce the core/runtime libraries to a single library thus merging
the backend files

Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com>
Change-Id: I69545765fe7a730368105cdbd067d3135ec7a174
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6155
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/gpu/cl/operators/ClWinogradConv2d.cpp b/src/gpu/cl/operators/ClWinogradConv2d.cpp
new file mode 100644
index 0000000..fbf6442
--- /dev/null
+++ b/src/gpu/cl/operators/ClWinogradConv2d.cpp
@@ -0,0 +1,306 @@
+/*
+ * Copyright (c) 2018-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/gpu/cl/operators/ClWinogradConv2d.h"
+
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/experimental/Types.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "src/core/CL/kernels/CLFillBorderKernel.h"
+#include "src/core/CL/kernels/CLFillBorderKernel.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/gpu/cl/kernels/ClWinogradFilterTransformKernel.h"
+#include "src/gpu/cl/kernels/ClWinogradInputTransformKernel.h"
+#include "src/gpu/cl/kernels/ClWinogradOutputTransformKernel.h"
+#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
+#include "support/Cast.h"
+
+using namespace arm_compute::experimental;
+
+namespace arm_compute
+{
+namespace opencl
+{
+namespace
+{
+Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout)
+{
+    Size2D output_tile = Size2D{};
+
+    const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height);
+
+    // Check if the input spatial dimensions are smaller than 4
+    const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW);
+
+    if(kernel_max_dim == 3U)
+    {
+        if(kernel_dims == Size2D(3U, 3U))
+        {
+            output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U);
+        }
+        else if(kernel_dims == Size2D(3U, 1U))
+        {
+            output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U);
+        }
+        else
+        {
+            output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U);
+        }
+    }
+    else if(kernel_max_dim == 5U)
+    {
+        output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U,
+                             kernel_dims.height == 1 ? 1U : 4U);
+    }
+    else if(kernel_max_dim == 7U)
+    {
+        output_tile = Size2D(kernel_dims.width == 1 ? 1U : 2U,
+                             kernel_dims.height == 1 ? 1U : 2U);
+    }
+
+    return output_tile;
+}
+
+bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
+{
+    // Check if we want to configure a Winograd configuration which requires fast math
+    using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
+
+    std::vector<WinogradConfiguration> fast_math_winograd =
+    {
+        WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5)),
+        WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7))
+    };
+
+    auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
+                            std::pair<int, int>(kernel_size.width, kernel_size.height));
+
+    return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
+}
+
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
+                          const ActivationLayerInfo &act_info, bool enable_fast_math)
+{
+    // Get indeces for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D input_dims  = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]);
+    const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
+    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout());
+
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_left() > (kernel_size.x() / 2u)) || (conv_info.pad_right() > (kernel_size.x() / 2u))), "Winograd only supports padding up to half kernel size");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(((conv_info.pad_top() > (kernel_size.y() / 2u)) || (conv_info.pad_bottom() > (kernel_size.y() / 2u))), "Winograd only supports padding up to half kernel size");
+
+    // Check if the Winograd configuration requires fast math
+    if(!enable_fast_math)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
+    }
+
+    const WinogradInfo winograd_info = WinogradInfo(output_tile,
+                                                    kernel_size,
+                                                    input_dims,
+                                                    conv_info,
+                                                    src->data_layout());
+
+    // Validate input transform
+    const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info);
+    const TensorInfo  input0       = src->clone()->set_tensor_shape(input0_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradInputTransformKernel::validate(src, &input0, winograd_info));
+
+    // Validate filter transform
+    const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
+    const TensorInfo  input1       = weights->clone()->set_tensor_shape(input1_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
+
+    // Validate batched matrix multiply
+    TensorShape batched_mm_output_shape = input0.tensor_shape();
+    batched_mm_output_shape[0]          = input1.tensor_shape()[0];
+    const TensorInfo batched_mm_output  = input0.clone()->set_tensor_shape(batched_mm_output_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false,
+                                                                                                                     GEMMLowpOutputStageInfo(), (src->data_type() == DataType::F16))));
+
+    // Configure output transform
+    ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClWinogradOutputTransformKernel::validate(&batched_mm_output, biases, dst, winograd_info, act_info));
+    return Status{};
+}
+
+} // namespace
+
+ClWinogradConv2d::ClWinogradConv2d()
+    : _batched_mm(),
+      _input_transform(std::make_unique<kernels::ClWinogradInputTransformKernel>()),
+      _filter_transform(std::make_unique<kernels::ClWinogradFilterTransformKernel>()),
+      _output_transform(std::make_unique<kernels::ClWinogradOutputTransformKernel>()),
+      _border_handler(),
+      _input0(),
+      _input1(),
+      _batched_mm_output(),
+      _is_prepared(false),
+      _aux_mem()
+{
+}
+
+ClWinogradConv2d::~ClWinogradConv2d() = default;
+
+void ClWinogradConv2d::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
+                                 const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
+{
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math));
+    // Get indices for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D input_dims  = Size2D(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height]);
+    const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
+    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, src->data_layout());
+
+    // Check if the Winograd configuration requires fast math
+    if(!enable_fast_math)
+    {
+        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); //disable winograd for fp16 if fast math is false.
+        ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
+    }
+    const WinogradInfo winograd_info = WinogradInfo(output_tile,
+                                                    kernel_size,
+                                                    input_dims,
+                                                    conv_info,
+                                                    src->data_layout());
+
+    _is_prepared = false;
+
+    // Configure input transform
+    _input_transform->configure(compile_context, src, &_input0, winograd_info);
+    _border_handler.configure(compile_context, src, _input_transform->border_size(), BorderMode::CONSTANT, PixelValue());
+
+    // Configure filter transform
+    _filter_transform->configure(compile_context, weights, &_input1, winograd_info);
+
+    // Configure batched matrix multiply
+    _batched_mm.configure(compile_context, &_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0,
+                                                                                                                  false, false,
+                                                                                                                  GEMMLowpOutputStageInfo(),
+                                                                                                                  (src->data_type() == DataType::F16)));
+
+    // Configure output transform
+    _output_transform->configure(compile_context, &_batched_mm_output, biases, dst, winograd_info, act_info);
+
+    _aux_mem                             = _batched_mm.workspace();
+    const MemoryLifetime wino_wei_lifetm = std::any_of(std::begin(_aux_mem), std::end(_aux_mem), [](const auto & r)
+    {
+        return (r.lifetime == MemoryLifetime::Persistent) && (r.size > 0);
+    }) ?
+    MemoryLifetime::Prepare :
+    MemoryLifetime::Persistent;
+    _aux_mem.push_back(MemoryInfo(offset_int_vec(2), MemoryLifetime::Temporary, _input0.total_size()));
+    _aux_mem.push_back(MemoryInfo(offset_int_vec(3), wino_wei_lifetm, _input1.total_size()));
+    _aux_mem.push_back(MemoryInfo(offset_int_vec(4), MemoryLifetime::Temporary, _batched_mm_output.total_size()));
+}
+
+Status ClWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
+                                  const ActivationLayerInfo &act_info, bool enable_fast_math)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info, act_info, enable_fast_math));
+    return Status{};
+}
+
+void ClWinogradConv2d::run(ITensorPack &tensors)
+{
+    const bool is_gemm_reshaped = _aux_mem[3].lifetime == MemoryLifetime::Prepare;
+
+    auto src    = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
+    auto biases = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
+    auto dst    = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
+
+    CLAuxTensorHandler input0(offset_int_vec(2), _input0, tensors, true);
+    CLAuxTensorHandler input1(offset_int_vec(3), _input1, tensors, true, is_gemm_reshaped);
+    CLAuxTensorHandler batched_mm_output(offset_int_vec(4), _batched_mm_output, tensors, true);
+
+    prepare(tensors);
+
+    // Run input transform
+    ITensorPack pack_it
+    {
+        { TensorType::ACL_SRC, src },
+        { TensorType::ACL_DST, input0.get() },
+    };
+    CLScheduler::get().enqueue_op(_border_handler, pack_it, false);
+    CLScheduler::get().enqueue_op(*_input_transform, pack_it, false);
+
+    // Run batched matrix multiplication
+    ITensorPack pack_mm = tensors;
+    pack_mm.add_const_tensor(TensorType::ACL_SRC_0, input0.get());
+    pack_mm.add_tensor(TensorType::ACL_DST, batched_mm_output.get());
+    is_gemm_reshaped ? pack_mm.remove_tensor(TensorType::ACL_SRC_1) : pack_mm.add_const_tensor(TensorType::ACL_SRC_1, input1.get());
+    _batched_mm.run(pack_mm);
+
+    // Run output transform
+    ITensorPack pack_ot
+    {
+        { TensorType::ACL_SRC_0, batched_mm_output.get() },
+        { TensorType::ACL_SRC_1, biases },
+        { TensorType::ACL_DST, dst },
+    };
+    CLScheduler::get().enqueue_op(*_output_transform, pack_ot);
+}
+
+void ClWinogradConv2d::prepare(ITensorPack &tensors)
+{
+    if(!_is_prepared)
+    {
+        auto       weights = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
+        ICLTensor *in1_aux = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(offset_int_vec(3)));
+
+        CLAuxTensorHandler input1(_input1, *in1_aux);
+        ITensorPack        pack_ft
+        {
+            { TensorType::ACL_SRC, weights },
+            { TensorType::ACL_DST, input1.get() },
+        };
+        // Run filter transform and mark original weights as unused
+        CLScheduler::get().enqueue_op(*_filter_transform, pack_ft, false);
+        weights->mark_as_unused();
+
+        // Prepare GEMM and release reshaped weights if marked unused by ClGemm
+        ITensorPack mm_prepare_pack = tensors;
+        mm_prepare_pack.add_tensor(ACL_SRC_1, input1.get());
+        _batched_mm.prepare(mm_prepare_pack);
+
+        CLScheduler::get().queue().finish();
+        _is_prepared = true;
+    }
+}
+
+experimental::MemoryRequirements ClWinogradConv2d::workspace() const
+{
+    return _aux_mem;
+}
+} // namespace opencl
+} // namespace arm_compute
\ No newline at end of file