blob: 29d40f0e526438f645e1e6ff1c0b1a1d42fc76a9 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuConcatenateBatchKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
template <typename T>
void batch_concat(const ITensor *src, ITensor *dst, unsigned int batch_offset, const Window &window)
{
// Offset src
uint8_t *src_ptr = src->buffer() + src->info()->offset_first_element_in_bytes();
// Offset dst
uint8_t *dst_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes() + batch_offset * dst->info()->strides_in_bytes()[3];
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const int window_step_x = 16 / dst->info()->element_size();
Window win{ window };
win.set(Window::DimX, Window::Dimension(0, 1, 1));
win.set(3, Window::Dimension(0, src->info()->tensor_shape()[3], 1));
Iterator src_it(src, win);
Iterator dst_it(dst, win);
const DataType dt = src->info()->data_type();
const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
const UniformQuantizationInfo dst_qinfo = dst->info()->quantization_info().uniform();
if(dt == DataType::QASYMM8 && src_qinfo != dst_qinfo)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const uint8_t *>(src_ptr + src_it.offset());
const auto out_ptr = reinterpret_cast<uint8_t *>(dst_ptr + dst_it.offset());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
wrapper::vstore(out_ptr, vquantize(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(out_ptr + x) = quantize_qasymm8(dequantize_qasymm8(*(in_ptr + x), src_qinfo), dst_qinfo);
}
},
src_it, dst_it);
}
else if(dt == DataType::QASYMM8_SIGNED && src_qinfo != dst_qinfo)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const int8_t *>(src_ptr + src_it.offset());
const auto out_ptr = reinterpret_cast<int8_t *>(dst_ptr + dst_it.offset());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
wrapper::vstore(out_ptr, vquantize_signed(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(out_ptr + x) = quantize_qasymm8_signed(dequantize_qasymm8_signed(*(in_ptr + x), src_qinfo), dst_qinfo);
}
},
src_it, dst_it);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const T *>(src_ptr + src_it.offset());
const auto out_ptr = reinterpret_cast<T *>(dst_ptr + dst_it.offset());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
wrapper::vstore(out_ptr + x, wrapper::vloadq(in_ptr + x));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(out_ptr + x) = *(in_ptr + x);
}
},
src_it, dst_it);
}
}
Status validate_arguments(const ITensorInfo *src, unsigned int batch_offset, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
//Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src) is not needed here as this kernel doesn't use CPU FP16 instructions.
ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimX) != dst->dimension(Window::DimX));
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimY) != dst->dimension(Window::DimY));
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimZ) != dst->dimension(Window::DimZ));
ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(3) + batch_offset > dst->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(4, src, dst);
return Status{};
}
} // namespace
void CpuConcatenateBatchKernel::configure(const ITensorInfo *src, unsigned int batch_offset, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, batch_offset, dst));
_func = nullptr;
_batch_offset = batch_offset;
switch(src->data_type())
{
case DataType::S8:
case DataType::U8:
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
_func = &batch_concat<uint8_t>;
break;
case DataType::S16:
case DataType::U16:
case DataType::F16:
_func = &batch_concat<uint16_t>;
break;
case DataType::S32:
case DataType::U32:
case DataType::F32:
_func = &batch_concat<uint32_t>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
// Configure kernel window
Window win = calculate_max_window(*dst, Steps());
ICpuKernel::configure(win);
}
Status CpuConcatenateBatchKernel::validate(const arm_compute::ITensorInfo *src,
unsigned int batch_offset,
const arm_compute::ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, batch_offset, dst));
return Status{};
}
void CpuConcatenateBatchKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(tensors.get_const_tensor(TensorType::ACL_SRC),
tensors.get_tensor(TensorType::ACL_DST),
_batch_offset,
window);
}
const char *CpuConcatenateBatchKernel::name() const
{
return "CpuConcatenateBatchKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute