blob: e54825c0aef1c18b92b892e4f83c20be65369222 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
#define VEC_QUANT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)
inline VEC_QUANT requantize(VEC_QUANT input, float in_offset, float out_offset, float in_scale, float out_scale)
{
const VEC_FLOAT in_f32 = (CONVERT(input, VEC_FLOAT) - (VEC_FLOAT)((float)in_offset)) * (VEC_FLOAT)((float)in_scale);
const VEC_FLOAT out_f32 = in_f32 / ((VEC_FLOAT)(float)out_scale) + ((VEC_FLOAT)((float)out_offset));
const VEC_QUANT res_q8 = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT), VEC_QUANT);
return res_q8;
}
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
#if defined(DATA_TYPE) && defined(VEC_SIZE)
#if defined(DEPTH) && defined(ELEMENT_SIZE)
#if defined(INPUT1_WIDTH)
#if ELEMENT_SIZE == 1
#define COND_DATA_TYPE char
#elif ELEMENT_SIZE == 2
#define COND_DATA_TYPE short
#elif ELEMENT_SIZE == 4
#define COND_DATA_TYPE int
#else // ELEMENT_SIZE
#error "Element size not supported"
#endif // ELEMENT_SIZE
#if VEC_SIZE == 1
#define SEQ ((int)(0))
#elif VEC_SIZE == 2
#define SEQ ((int2)(0, 1))
#elif VEC_SIZE == 3
#define SEQ ((int3)(0, 1, 2))
#elif VEC_SIZE == 4
#define SEQ ((int4)(0, 1, 2, 3))
#elif VEC_SIZE == 8
#define SEQ ((int8)(0, 1, 2, 3, 4, 5, 6, 7))
#elif VEC_SIZE == 16
#define SEQ ((int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))
#else // VEC_SIZE
#error "Vector size not supported"
#endif // VEC_SIZE
/** This kernel concatenates two input tensors into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
* @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8
*
* @param[in] src1_ptr Pointer to the source tensor. Supported data types: All.
* @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_width_x2(
TENSOR4D_DECLARATION(src1),
TENSOR4D_DECLARATION(src2),
TENSOR4D_DECLARATION(dst))
{
// Calculate input indices
const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
const int y = get_global_id(1);
const int z = get_global_id(2) % (int)DEPTH;
const int w = get_global_id(2) / (int)DEPTH;
const int x1 = min(x, (int)INPUT1_WIDTH - (int)VEC_SIZE);
const int x2 = max(x - (int)INPUT1_WIDTH, 0);
// Calculate inputs and output addresses
const __global uchar *dst_addr = dst_ptr + (int)dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * (int)dst_stride_y + z * (int)dst_stride_z + w * (int)dst_stride_w;
const __global uchar *src1_addr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * sizeof(DATA_TYPE) + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w;
const __global uchar *src2_addr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * sizeof(DATA_TYPE) + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src1_addr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src2_addr);
#if defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT)
src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) */
const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x);
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
// Rotate src1/2_values, if values0 is a combination of src1_values and src2_values.
src1_values = (x < INPUT1_WIDTH && x > (INPUT1_WIDTH - VEC_SIZE)) ? ROTATE(src1_values, VEC_SIZE, INPUT1_ROTATE_N) : src1_values;
src2_values = (x < INPUT1_WIDTH && x > (INPUT1_WIDTH - VEC_SIZE)) ? ROTATE(src2_values, VEC_SIZE, INPUT1_ROTATE_N) : src2_values;
const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values0 = select(src2_values, src1_values, cond);
STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
}
#if defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH)
/** This kernel concatenates four input tensors into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
* @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8
* @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8
* @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8
*
* @param[in] src1_ptr Pointer to the source tensor. Supported data types: All
* @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src3_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src3_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src3_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src3_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src3_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src3_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src3_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src3_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src3_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src3_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src4_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src4_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src4_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src4_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src4_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src4_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src4_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src4_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src4_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src4_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_width_x4(
TENSOR4D_DECLARATION(src1),
TENSOR4D_DECLARATION(src2),
TENSOR4D_DECLARATION(src3),
TENSOR4D_DECLARATION(src4),
TENSOR4D_DECLARATION(dst))
{
// Calculate input indices
const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
const int y = get_global_id(1);
const int z = get_global_id(2) % (int)DEPTH;
const int w = get_global_id(2) / (int)DEPTH;
const int x1 = min(x, (int)INPUT1_WIDTH - (int)VEC_SIZE);
const int x2 = min(max(x - (int)INPUT1_WIDTH, 0), (int)INPUT2_WIDTH - (int)VEC_SIZE);
const int x3 = min(max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH, 0), (int)INPUT3_WIDTH - (int)VEC_SIZE);
const int x4 = max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH - (int)INPUT3_WIDTH, 0);
// Calculate inputs and output addresses
const __global uchar *dst_addr = dst_ptr + (int)dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * (int)dst_stride_y + z * (int)dst_stride_z + w * (int)dst_stride_w;
const __global uchar *src1_addr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * sizeof(DATA_TYPE) + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w;
const __global uchar *src2_addr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * sizeof(DATA_TYPE) + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w;
const __global uchar *src3_addr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * sizeof(DATA_TYPE) + y * (int)src3_stride_y + z * (int)src3_stride_z + w * (int)src3_stride_w;
const __global uchar *src4_addr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * sizeof(DATA_TYPE) + y * (int)src4_stride_y + z * (int)src4_stride_z + w * (int)src4_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src1_addr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src2_addr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src3_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src3_addr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src4_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src4_addr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4)
src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);
src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT);
src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) */
const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x);
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in2 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in3 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in4 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
// Rotate src1/2_values, if values0 is a combination of src1_values and src2_values.
src1_values = (x < INPUT1_WIDTH && x > (INPUT1_WIDTH - VEC_SIZE)) ? ROTATE(src1_values, VEC_SIZE, INPUT1_ROTATE_N) : src1_values;
src2_values = (x < INPUT1_WIDTH && x > (INPUT1_WIDTH - VEC_SIZE)) ? ROTATE(src2_values, VEC_SIZE, INPUT1_ROTATE_N) : src2_values;
// Rotate src2/3_values, if values0 is a combination of src2_values and src3_values.
src2_values = (x < (INPUT1_WIDTH + INPUT2_WIDTH) && x > (INPUT1_WIDTH + INPUT2_WIDTH - VEC_SIZE)) ? ROTATE(src2_values, VEC_SIZE, INPUT2_ROTATE_N) : src2_values;
src3_values = (x < (INPUT1_WIDTH + INPUT2_WIDTH) && x > (INPUT1_WIDTH + INPUT2_WIDTH - VEC_SIZE)) ? ROTATE(src3_values, VEC_SIZE, INPUT2_ROTATE_N) : src3_values;
// Rotate src3/4_values, if values0 is a combination of src3_values and src4_values.
src3_values = (x < (INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH) && x > (INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH - VEC_SIZE)) ? ROTATE(src3_values, VEC_SIZE, INPUT3_ROTATE_N) : src3_values;
src4_values = (x < (INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH) && x > (INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH - VEC_SIZE)) ? ROTATE(src4_values, VEC_SIZE, INPUT3_ROTATE_N) : src4_values;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values0 = select(src2_values, src1_values, cond_in2);
values0 = select(src3_values, values0, cond_in3);
values0 = select(src4_values, values0, cond_in4);
STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
}
#endif /* defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) */
#endif /* defined(INPUT1_WIDTH) */
#endif /* defined(DEPTH) && defined(ELEMENT_SIZE) */
#if defined(WIDTH_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER)
/** This kernel concatenates the input tensor into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_width(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst))
{
// Calculate input indices
const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
const int y = get_global_id(1);
const int z = get_global_id(2) % (int)DEPTH;
const int w = get_global_id(2) / (int)DEPTH;
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * src_stride_y + z * src_stride_z + w * src_stride_w;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z + w * dst_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
const VEC_QUANT out0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
STORE_VECTOR_SELECT(out, DATA_TYPE, dst_addr + WIDTH_OFFSET * sizeof(DATA_TYPE), VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
#else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + WIDTH_OFFSET * sizeof(DATA_TYPE), VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
}
#endif /* defined(WIDTH_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER)*/
#if defined(VEC_SIZE_LEFTOVER)
#if defined(HEIGHT_OFFSET) && defined(DEPTH) && defined(VEC_SIZE)
/** This kernel concatenates the input tensor into the output tensor along the second dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Vector sizes supported are 2,4,8 and 16.
* @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_height(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst))
{
const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + (get_global_id(2) % DEPTH) * src_stride_z + (get_global_id(
2) / DEPTH) * src_stride_w;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + (get_global_id(2) % DEPTH) * dst_stride_z + (get_global_id(
2) / DEPTH) * dst_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
const VEC_QUANT out0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
STORE_VECTOR_SELECT(out, DATA_TYPE, dst_addr + HEIGHT_OFFSET * dst_stride_y, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
#else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + HEIGHT_OFFSET * dst_stride_y, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
}
#endif /* defined(HEIGHT_OFFSET) && defined(DEPTH) */
/** This kernel concatenates the input tensor into the output tensor along the third dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: All
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] offsets The offsets to the first valid element of the output tensor in bytes
*/
__kernel void concatenate(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
int offset)
{
uint x_offs = max((int)(get_global_id(0) * VEC_SIZE * sizeof(DATA_TYPE) - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE * sizeof(DATA_TYPE)), 0);
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + get_global_id(2) * src_stride_z;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + get_global_id(2) * dst_stride_z;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
source_values0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + offset, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
}
#endif /* defined(VEC_SIZE_LEFTOVER) */
#endif /* defined(DATA_TYPE) && defined(VEC_SIZE) */