blob: 821412b14959abef4a7e13cf5b4c8f0c9d9e018f [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLCropResize.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <cstddef>
namespace arm_compute
{
namespace
{
inline void configure_crop(const ICLTensor *input,
ICLTensor *crop_boxes,
ICLTensor *box_ind,
ICLTensor *output,
uint32_t crop_box_ind,
Coordinates &start,
Coordinates &end,
uint32_t &batch_index)
{
batch_index = *(reinterpret_cast<int32_t *>(box_ind->ptr_to_element(Coordinates(crop_box_ind))));
// _crop_box_ind is used to index crop_boxes and retrieve the appropriate crop box.
// The crop box is specified by normalized coordinates [y0, x0, y1, x1].
const float x0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(1, crop_box_ind)));
const float y0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(0, crop_box_ind)));
const float x1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(3, crop_box_ind)));
const float y1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(2, crop_box_ind)));
// The normalized coordinates are scaled to retrieve the floating point image coordinates which are rounded to integers.
start = Coordinates(std::floor(x0 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
std::floor(y0 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
end = Coordinates(std::floor(x1 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
std::floor(y1 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
const TensorShape out_shape(input->info()->tensor_shape()[0], static_cast<uint32_t>(abs(end[0] - start[0])) + 1,
static_cast<uint32_t>(abs(end[1] - start[1])) + 1);
output->info()->set_tensor_shape(out_shape);
}
} // namespace
CLCropResize::CLCropResize()
: _input(nullptr),
_boxes(nullptr),
_box_ind(nullptr),
_output(nullptr),
_num_boxes(0),
_method(),
_extrapolation_value(0),
_scale(),
_copy(),
_crop_results(),
_scaled_results(),
_internal_functions()
{
}
CLCropResize::~CLCropResize() = default;
Status CLCropResize::validate(const ITensorInfo *input,
ITensorInfo *boxes,
ITensorInfo *box_ind,
const ITensorInfo *output,
Coordinates2D crop_size,
InterpolationPolicy method,
float extrapolation_value)
{
ARM_COMPUTE_RETURN_ERROR_ON(crop_size.x <= 0 || crop_size.y <= 0);
ARM_COMPUTE_RETURN_ERROR_ON(method == InterpolationPolicy::AREA);
ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[0] != 4);
ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]);
TensorInfo temp_info;
ARM_COMPUTE_RETURN_ON_ERROR(CLCrop::validate(input->clone().get(), &temp_info, {0, 0}, {1, 1},
input->dimension(3) - 1, extrapolation_value));
if (output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
TensorShape out_shape(input->tensor_shape()[0], crop_size.x, crop_size.y, boxes->tensor_shape()[1]);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), out_shape);
}
return Status{};
}
void CLCropResize::configure(const ICLTensor *input,
ICLTensor *boxes,
ICLTensor *box_ind,
ICLTensor *output,
Coordinates2D crop_size,
InterpolationPolicy method,
float extrapolation_value)
{
configure(CLKernelLibrary::get().get_compile_context(), input, boxes, box_ind, output, crop_size, method,
extrapolation_value);
}
void CLCropResize::configure(const CLCompileContext &compile_context,
const ICLTensor *input,
ICLTensor *boxes,
ICLTensor *box_ind,
ICLTensor *output,
Coordinates2D crop_size,
InterpolationPolicy method,
float extrapolation_value)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, boxes, box_ind);
ARM_COMPUTE_ERROR_THROW_ON(CLCropResize::validate(input->info(), boxes->info(), box_ind->info(), output->info(),
crop_size, method, extrapolation_value));
ARM_COMPUTE_LOG_PARAMS(input, boxes, box_ind, output, crop_size, method, extrapolation_value);
TensorShape output_shape =
TensorShape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y, boxes->info()->tensor_shape()[1]);
auto_init_if_empty(*output->info(), output_shape, 1, DataType::F32);
_num_boxes = boxes->info()->tensor_shape()[1];
TensorShape out_shape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y);
_input = input;
_boxes = boxes;
_box_ind = box_ind;
_output = output;
_method = method;
_extrapolation_value = extrapolation_value;
// For each crop box:
// - The initial cropped image is produced as specified by boxes[i] from the 3D image input[box_ind[i]].
// Possibly using a CLCrop and up to four CLFills.
// - A tensor is required to hold this initial cropped image.
// - A scale function is used to resize the cropped image to the size specified by crop_size.
// - A tensor is required to hold the final scaled image before it is copied into the 4D output
// that will hold all final cropped and scaled 3D images using CLCopy.
// The contents of _boxes and _box_ind are required to calculate the shape
// of the initial cropped image and thus are required to configure the
// kernels used for cropping and scaling.
_boxes->map(CLScheduler::get().queue());
_box_ind->map(CLScheduler::get().queue());
for (unsigned int num_box = 0; num_box < _num_boxes; ++num_box)
{
auto crop_tensor = std::make_unique<CLTensor>();
TensorInfo crop_result_info(1, DataType::F32);
crop_result_info.set_data_layout(DataLayout::NHWC);
crop_tensor->allocator()->init(crop_result_info);
_crop_results.emplace_back(std::move(crop_tensor));
auto scale_tensor = std::make_unique<CLTensor>();
TensorInfo scaled_result_info(out_shape, 1, DataType::F32);
scaled_result_info.set_data_layout(DataLayout::NHWC);
scale_tensor->allocator()->init(scaled_result_info);
_scaled_results.emplace_back(std::move(scale_tensor));
// Size of the crop box in _boxes has to be given before the configure
uint32_t batch_index;
Coordinates start{};
Coordinates end{};
configure_crop(_input, _boxes, _box_ind, _crop_results[num_box].get(), num_box, start, end, batch_index);
auto scale_kernel = std::make_unique<CLScale>();
scale_kernel->configure(
compile_context, _crop_results[num_box].get(), _scaled_results[num_box].get(),
ScaleKernelInfo{_method, BorderMode::CONSTANT, PixelValue(_extrapolation_value), SamplingPolicy::TOP_LEFT});
_scale.emplace_back(std::move(scale_kernel));
Window win = calculate_max_window(*_output->info());
win.set(3, Window::Dimension(num_box, num_box + 1, 1));
auto copy_kernel = std::make_unique<CLCopy>();
copy_kernel->configure(compile_context, _scaled_results[num_box].get(), _output, &win);
_copy.emplace_back(std::move(copy_kernel));
_crop_results[num_box]->allocator()->allocate();
_scaled_results[num_box]->allocator()->allocate();
bool is_width_flipped = end[0] < start[0];
bool is_height_flipped = end[1] < start[1];
/** The number of rows out of bounds at the start and end of _crop_results[num_box].get(). */
std::array<int32_t, 2> rows_out_of_bounds{0};
/** The number of columns out of bounds at the start and end of _crop_results[num_box].get(). */
std::array<int32_t, 2> cols_out_of_bounds{0};
if (is_height_flipped)
{
rows_out_of_bounds[0] = start[1] >= static_cast<int32_t>(_input->info()->dimension(2))
? std::min(start[1] - _input->info()->dimension(2) + 1,
_crop_results[num_box].get()->info()->dimension(2))
: 0;
rows_out_of_bounds[1] =
end[1] < 0 ? std::min(-end[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)))
: 0;
}
else
{
rows_out_of_bounds[0] =
start[1] < 0
? std::min(-start[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)))
: 0;
rows_out_of_bounds[1] = end[1] >= static_cast<int32_t>(_input->info()->dimension(2))
? std::min(end[1] - _input->info()->dimension(2) + 1,
_crop_results[num_box].get()->info()->dimension(2))
: 0;
}
if (is_width_flipped)
{
cols_out_of_bounds[0] = start[0] >= static_cast<int32_t>(_input->info()->dimension(1))
? std::min(start[0] - _input->info()->dimension(1) + 1,
_crop_results[num_box].get()->info()->dimension(1))
: 0;
cols_out_of_bounds[1] =
end[0] < 0 ? std::min(-end[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)))
: 0;
}
else
{
cols_out_of_bounds[0] =
start[0] < 0
? std::min(-start[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)))
: 0;
cols_out_of_bounds[1] = end[0] >= static_cast<int32_t>(_input->info()->dimension(1))
? std::min(end[0] - _input->info()->dimension(1) + 1,
_crop_results[num_box].get()->info()->dimension(1))
: 0;
}
Window full_window = calculate_max_window(*_crop_results[num_box].get()->info());
// Full _crop_results[num_box].get() window:
// --------------------------------
// | Out of bounds |
// | rows before |
// |------------------------------|
// | Out of | In | Out of |
// | bounds | bounds | bounds |
// | cols | elements | cols |
// | before | copied | after |
// | | from input | |
// |------------------------------|
// | Out of bounds |
// | rows after |
// |------------------------------|
// Use a separate _crop_results[num_box].get() window for each section of the full _crop_results[num_box].get() window.
// Fill all _crop_results[num_box].get() rows that have no elements that are within the input bounds
// with the extrapolation value using memset.
// First for the rows before the in bounds rows.
if (rows_out_of_bounds[0] > 0)
{
Window slice_fill_rows_before(full_window);
slice_fill_rows_before.set(2, Window::Dimension(0, rows_out_of_bounds[0], 1));
auto kernel = std::make_unique<CLFill>();
kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value,
&slice_fill_rows_before);
//_internal_functions.emplace_back(std::move(kernel));
_internal_functions.push_back(std::move(kernel));
}
Window slice_in(full_window);
slice_in.set(2,
Window::Dimension(rows_out_of_bounds[0],
_crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], 1));
slice_in.set(1,
Window::Dimension(cols_out_of_bounds[0],
_crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], 1));
int rows_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)) -
rows_out_of_bounds[0] - rows_out_of_bounds[1];
if (rows_in_bounds > 0)
{
// Fill all elements that share a row with an in bounds element with the extrapolation value.
if (cols_out_of_bounds[0] > 0)
{
Window slice_fill_cols_before(slice_in);
slice_fill_cols_before.set(1, Window::Dimension(0, cols_out_of_bounds[0], 1));
auto kernel = std::make_unique<CLFill>();
kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value,
&slice_fill_cols_before);
//_internal_functions.emplace_back(std::move(kernel));
_internal_functions.push_back(std::move(kernel));
}
if (cols_out_of_bounds[1] > 0)
{
Window slice_fill_cols_after(slice_in);
slice_fill_cols_after.set(
1, Window::Dimension(_crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1],
_crop_results[num_box].get()->info()->dimension(1), 1));
auto kernel = std::make_unique<CLFill>();
kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value,
&slice_fill_cols_after);
//_internal_functions.emplace_back(std::move(kernel));
_internal_functions.push_back(std::move(kernel));
}
// Copy all elements within the input bounds from the input tensor.
int cols_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)) -
cols_out_of_bounds[0] - cols_out_of_bounds[1];
if (cols_in_bounds > 0)
{
Coordinates2D start_in{
is_width_flipped ? start[0] - cols_out_of_bounds[0] : start[0] + cols_out_of_bounds[0],
is_height_flipped ? start[1] - rows_out_of_bounds[0] : start[1] + rows_out_of_bounds[0]};
Coordinates2D end_in{
is_width_flipped ? start_in.x - cols_in_bounds + 1 : start_in.x + cols_in_bounds - 1,
is_height_flipped ? start_in.y - rows_in_bounds + 1 : start_in.y + rows_in_bounds - 1};
auto kernel = std::make_unique<CLCrop>();
kernel->configure(compile_context, _input, _crop_results[num_box].get(), start_in, end_in, batch_index,
extrapolation_value, &slice_in);
//_internal_functions.emplace_back(std::move(kernel));
_internal_functions.push_back(std::move(kernel));
}
}
// Fill all rows after the in bounds elements with the extrapolation value.
if (rows_out_of_bounds[1] > 0)
{
Window slice_fill_rows_after(full_window);
slice_fill_rows_after.set(
2, Window::Dimension(_crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1],
_crop_results[num_box].get()->info()->dimension(2), 1));
auto kernel = std::make_unique<CLFill>();
kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value,
&slice_fill_rows_after);
//_internal_functions.emplace_back(std::move(kernel));
_internal_functions.push_back(std::move(kernel));
}
}
_boxes->unmap(CLScheduler::get().queue());
_box_ind->unmap(CLScheduler::get().queue());
CLScheduler::get().sync();
}
void CLCropResize::run()
{
ARM_COMPUTE_ERROR_ON_MSG(_output == nullptr, "Unconfigured function");
for (unsigned int i = 0; i < _internal_functions.size(); ++i)
{
_internal_functions[i]->run();
}
CLScheduler::get().sync();
for (auto &kernel : _scale)
{
kernel->run();
}
CLScheduler::get().sync();
for (auto &kernel : _copy)
{
kernel->run();
}
CLScheduler::get().sync();
}
} // namespace arm_compute