Optimize CPU base-e exponential function on FP32

Resolves: COMPMID-5664
Signed-off-by: Viet-Hoa Do <viet-hoa.do@arm.com>
Change-Id: I4182752e213aade19005ee984a488c2490453f8f
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/8747
Benchmark: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Pablo Marquez Tello <pablo.tello@arm.com>
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/NEON/NEMath.inl b/src/core/NEON/NEMath.inl
index acac36e..94bbc10 100644
--- a/src/core/NEON/NEMath.inl
+++ b/src/core/NEON/NEMath.inl
@@ -28,21 +28,6 @@
 
 namespace arm_compute
 {
-/** Exponent polynomial coefficients */
-const std::array<float32x4_t, 8> exp_tab =
-{
-    {
-        vdupq_n_f32(1.f),
-        vdupq_n_f32(0.0416598916054f),
-        vdupq_n_f32(0.500000596046f),
-        vdupq_n_f32(0.0014122662833f),
-        vdupq_n_f32(1.00000011921f),
-        vdupq_n_f32(0.00833693705499f),
-        vdupq_n_f32(0.166665703058f),
-        vdupq_n_f32(0.000195780929062f),
-    }
-};
-
 /** Logarithm polynomial coefficients */
 const std::array<float32x4_t, 8> log_tab =
 {
@@ -65,6 +50,15 @@
 constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)
 
 #ifndef DOXYGEN_SKIP_THIS
+inline float32x4_t prefer_vfmaq_f32(float32x4_t a, float32x4_t b, float32x4_t c)
+{
+#ifdef __aarch64__
+    return vfmaq_f32(a, b, c);
+#else // __aarch64__
+    return vmlaq_f32(a, b, c);
+#endif // __aarch64__
+}
+
 inline float32x4_t vfloorq_f32(float32x4_t val)
 {
     static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
@@ -142,26 +136,70 @@
     return res;
 }
 
+static const uint32_t exp_f32_coeff[] = {
+    0x3f7ffff6, // x^1: 0x1.ffffecp-1f
+    0x3efffedb, // x^2: 0x1.fffdb6p-2f
+    0x3e2aaf33, // x^3: 0x1.555e66p-3f
+    0x3d2b9f17, // x^4: 0x1.573e2ep-5f
+    0x3c072010, // x^5: 0x1.0e4020p-7f
+};
+
 inline float32x4_t vexpq_f32(float32x4_t x)
 {
-    static const float32x4_t CONST_LN2          = vdupq_n_f32(0.6931471805f); // ln(2)
-    static const float32x4_t CONST_INV_LN2      = vdupq_n_f32(1.4426950408f); // 1/ln(2)
-    static const float32x4_t CONST_INF          = vdupq_n_f32(std::numeric_limits<float>::infinity());
-    static const float32x4_t CONST_MAX_INPUT    = vdupq_n_f32(88.7f);
-    static const float32x4_t CONST_0            = vdupq_n_f32(0.f);
-    static const int32x4_t   CONST_NEGATIVE_126 = vdupq_n_s32(-126);
+    const auto c1 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[0]));
+    const auto c2 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[1]));
+    const auto c3 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[2]));
+    const auto c4 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[3]));
+    const auto c5 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[4]));
 
-    // Perform range reduction [-log(2),log(2)]
-    int32x4_t   m   = vcvtq_s32_f32(vmulq_f32(x, CONST_INV_LN2));
-    float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), CONST_LN2);
+    const auto shift   = vreinterpretq_f32_u32(vdupq_n_u32(0x4b00007f));  // 2^23 + 127 = 0x1.0000fep23f
+    const auto inv_ln2 = vreinterpretq_f32_u32(vdupq_n_u32(0x3fb8aa3b));  // 1 / ln(2) = 0x1.715476p+0f
+    const auto neg_ln2_hi  = vreinterpretq_f32_u32(vdupq_n_u32(0xbf317200));  // -ln(2) from bits  -1 to -19: -0x1.62e400p-1f
+    const auto neg_ln2_lo  = vreinterpretq_f32_u32(vdupq_n_u32(0xb5bfbe8e));  // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
 
-    // Polynomial Approximation
-    float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
+    const auto inf       = vdupq_n_f32(std::numeric_limits<float>::infinity());
+    const auto max_input = vdupq_n_f32(88.7f);   // Approximately ln(0x1.fffffep+127)
+    const auto zero      = vdupq_n_f32(0.f);
+    const auto min_input = vdupq_n_f32(-86.6f);  // Approximately ln(2^-125)
 
-    // Reconstruct
-    poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
-    poly = vbslq_f32(vcltq_s32(m, CONST_NEGATIVE_126), CONST_0, poly); // Handle underflow
-    poly = vbslq_f32(vcgtq_f32(x, CONST_MAX_INPUT), CONST_INF, poly);  // Handle overflow
+    // Range reduction:
+    //   e^x = 2^n * e^r
+    // where:
+    //   n = floor(x / ln(2))
+    //   r = x - n * ln(2)
+    //
+    // By adding x / ln(2) with 2^23 + 127 (shift):
+    //   * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
+    //     of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
+    //     the whole fraction part of z in FP32 format.
+    //     Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
+    //     (i.e. n) because the decimal part has been pushed out and lost.
+    //   * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
+    //     in FP32 format. Left shifting z by 23 bits will result in 2^n.
+    const auto z = prefer_vfmaq_f32(shift, x, inv_ln2);
+    const auto n = z - shift;
+    const auto scale = vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23);  // 2^n
+
+    // The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
+    // This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
+    const auto r_hi = prefer_vfmaq_f32(x, n, neg_ln2_hi);
+    const auto r = prefer_vfmaq_f32(r_hi, n, neg_ln2_lo);
+
+    // Compute the truncated Taylor series of e^r.
+    //   poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
+    const auto r2 = r * r;
+
+    const auto p1 = c1 * r;
+    const auto p23 = prefer_vfmaq_f32(c2, c3, r);
+    const auto p45 = prefer_vfmaq_f32(c4, c5, r);
+    const auto p2345 = prefer_vfmaq_f32(p23, p45, r2);
+    const auto p12345 = prefer_vfmaq_f32(p1, p2345, r2);
+
+    auto poly = prefer_vfmaq_f32(scale, p12345, scale);
+
+    // Handle underflow and overflow.
+    poly = vbslq_f32(vcltq_f32(x, min_input), zero, poly);
+    poly = vbslq_f32(vcgtq_f32(x, max_input), inf, poly);
 
     return poly;
 }