blob: 8fab6db1baeec97faba066c6a9afc37185940829 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm.hpp"
#include "kernel.hpp"
namespace winograd
{
template <>
void WeightTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>::execute(
const int n_output_channels,
const int n_input_channels,
const float* const input,
float* const output,
const int matrix_stride,
const int matrix_row_stride
)
{
constexpr int inner_tile_i = 4;
constexpr int inner_tile_j = 4;
// Get pointers to each cell of the weight tensor
const auto weight_col_stride = n_input_channels * n_output_channels;
const auto weight_row_stride = 3 * weight_col_stride;
const float *inptrs[3][3];
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride;
}
}
// For each input channel
for (int ic = 0; ic < n_input_channels; ic++)
{
float *outptr = output + ic * matrix_row_stride;
// For each output channel
int channels_remaining = n_output_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed in this kernel
float32x4_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1q_f32(inptrs[i][j]);
inptrs[i][j] += 4;
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
// Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
// Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[2][j] = vmulq_n_f32(vaddq_f32(vsubq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (int i = 0; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
// V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][1] = vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
// V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][2] = vmulq_n_f32(vaddq_f32(vsubq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
vst1q_f32(outptr + m*matrix_stride, V[i][j]);
}
}
outptr += 4;
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed in this kernel
float32x2_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1_f32(inptrs[i][j]);
inptrs[i][j] += 2;
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
// Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
// Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[2][j] = vmul_n_f32(vadd_f32(vsub_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (int i = 0; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
// V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][1] = vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
// V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][2] = vmul_n_f32(vadd_f32(vsub_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
vst1_f32(outptr + m*matrix_stride, V[i][j]);
}
}
outptr += 2;
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed in this kernel
float w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = *(inptrs[i][j]++);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (int i = 0; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
*(outptr + m*matrix_stride) = V[i][j];
}
}
outptr++;
}
}
}
template class WeightTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>;
} // namespace