blob: d391eddf8406412fbdb102ff64f45692b8af4864 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/GLES_COMPUTE/functions/GCFullyConnectedLayer.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
#include "support/MemorySupport.h"
#include <algorithm>
using namespace arm_compute;
void GCFullyConnectedLayerReshapeWeights::configure(const IGCTensor *input, IGCTensor *output)
{
auto k = arm_compute::support::cpp14::make_unique<GCTransposeKernel>();
k->configure(input, output);
_kernel = std::move(k);
}
GCFullyConnectedLayer::GCFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
: _memory_group(std::move(memory_manager)), _weights_manager(std::move(weights_manager)), _im2col_kernel(), _reshape_weights_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(),
_reshape_weights_output(), _original_weights(nullptr), _are_weights_reshaped(true), _is_fc_after_conv(true), _accumulate_biases(false)
{
}
void GCFullyConnectedLayer::configure_conv_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output)
{
ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
const DataType dt = input->info()->data_type();
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for im2col
TensorShape shape_im2col;
shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2));
shape_im2col.set(1, input->info()->dimension(3));
shape_im2col.set(2, input->info()->dimension(4));
shape_im2col.set(3, input->info()->dimension(5));
_im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt));
// Configure im2col kernel
_memory_group.manage(&_im2col_output);
_im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false);
// Configure matrix multiply kernel
_mm_kernel.configure(&_im2col_output, weights, output, 1.0f, false);
// Allocate the output tensor for im2col once all the configure methods have been called
_im2col_output.allocator()->allocate();
}
void GCFullyConnectedLayer::configure_fc_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
// Configure matrix multiply kernel
_mm_kernel.configure(input, weights, output, 1.0f, false);
}
void GCFullyConnectedLayer::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 2);
_original_weights = weights;
_are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
_is_fc_after_conv = true;
_accumulate_biases = false;
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
_accumulate_biases = true;
// Configure accumulate biases kernel
_accumulate_biases_kernel.configure(output, biases);
}
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const IGCTensor *weights_to_use = weights;
if(!_are_weights_reshaped)
{
weights_to_use = &_reshape_weights_output;
// Reshape the weights
_reshape_weights_kernel.configure(weights, &_reshape_weights_output);
}
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
if(is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
input->info()->tensor_shape().cend(),
output->info()->tensor_shape().cbegin() + 1));
}
else
{
_is_fc_after_conv = input->info()->num_dimensions() > 1;
}
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc(input, weights_to_use, output);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc(input, weights_to_use, output);
}
ARM_COMPUTE_ERROR_ON(fc_info.retain_internal_weights && _reshape_weights_output.gc_buffer() == 0);
_are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
}
void GCFullyConnectedLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Linearize input if it comes from a convolutional layer
if(_is_fc_after_conv)
{
GCScheduler::get().dispatch(_im2col_kernel, false);
}
if(!_are_weights_reshaped || _is_fc_after_conv)
{
GCScheduler::get().memory_barrier();
}
// Run matrix multiply
GCScheduler::get().dispatch(_mm_kernel, !_accumulate_biases);
// Accumulate biases if provided
if(_accumulate_biases)
{
GCScheduler::get().memory_barrier();
GCScheduler::get().dispatch(_accumulate_biases_kernel);
}
}
void GCFullyConnectedLayer::prepare()
{
// Reshape of the weights (happens only once)
if(!_are_weights_reshaped)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run reshape weights kernel and mark weights as unused
_reshape_weights_output.allocator()->allocate();
_reshape_weights_kernel.run();
// Mark original weights tensor as unused
_original_weights->mark_as_unused();
_are_weights_reshaped = true;
}
}