blob: 60d7181d97138b9278a159cbd7135249527bacaa [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/convolution/winograd/transforms/output.hpp"
#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_output_transform.hpp"
#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp"
namespace
{
template <bool Specialized, int PadBottom=0, int PadRight=0>
void winograd_output_transform_2x2_5x5_fp32_process_tile(
const int n_channels,
const float* const matrix_base,
const int matrix_stride,
const float* const biases,
float* const output,
const int output_row_stride,
const int output_col_stride,
const int _pad_bottom,
const int _pad_right
)
{
constexpr int OutputTileRows = 2, OutputTileCols = 2;
const int pad_bottom = Specialized ? PadBottom : _pad_bottom;
const int pad_right = Specialized ? PadRight : _pad_right;
const int cells_i = 2 - pad_bottom;
const int cells_j = 2 - pad_right;
// Construct a map to the output cells
float *outptrs[OutputTileRows][OutputTileCols];
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
}
}
const float *inptr = matrix_base;
const float *bptr = biases;
if (bptr)
{
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[6][6], FZ[6][2], f[2][2], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
}
// Write out the output tile
b = vld1q_f32(bptr);
bptr += 4;
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
outptrs[i][j] += 4;
}
}
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[6][6], FZ[6][2], f[2][2], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
}
// Write out the output tile
b = vld1_f32(bptr);
bptr += 2;
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
outptrs[i][j] += 2;
}
}
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[6][6], FZ[6][2], f[2][2], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
}
// Write out the output tile
b = *(bptr++);
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
*(outptrs[i][j]++) = f[i][j] + b;
}
}
}
}
else
{
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[6][6], FZ[6][2], f[2][2];
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
}
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1q_f32(outptrs[i][j], f[i][j]);
outptrs[i][j] += 4;
}
}
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[6][6], FZ[6][2], f[2][2];
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
}
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1_f32(outptrs[i][j], f[i][j]);
outptrs[i][j] += 2;
}
}
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[6][6], FZ[6][2], f[2][2];
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
}
// Write out the output tile
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
*(outptrs[i][j]++) = f[i][j];
}
}
}
}
}
} // namespace (anonymous)
namespace winograd
{
using Tiles = OutputTransformImplTiles<5, 5, 6, 6, float>;
template <>
const Tiles::TileFn Tiles::tilefn_generic = winograd_output_transform_2x2_5x5_fp32_process_tile<false>;
template <>
const Tiles::TileFn Tiles::tilefn_unpadded = winograd_output_transform_2x2_5x5_fp32_process_tile<true>;
template <>
const Tiles::TileFn Tiles::tilefn_bottom_padded[n_pad_bottom] = {
winograd_output_transform_2x2_5x5_fp32_process_tile<true, 1, 0>
};
template <>
const Tiles::TileFn Tiles::tilefn_right_padded[n_pad_right] = {
winograd_output_transform_2x2_5x5_fp32_process_tile<true, 0, 1>
};
template class OutputTransform<5, 5, 6, 6, float>;
} // namespace winograd