Integrate new winograd APIs from MLTech

Resolves: COMPMID-5400
Signed-off-by: Ramy Elgammal <ramy.elgammal@arm.com>
Change-Id: Ib4428436dd7a6e40d8b2d8a2f8dac1b079154551
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/7894
Reviewed-by: Pablo Marquez Tello <pablo.tello@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Benchmark: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/NEON/kernels/convolution/winograd/weight_transforms/a64_fp16_4x4_3x3.cpp b/src/core/NEON/kernels/convolution/winograd/weight_transforms/a64_fp16_4x4_3x3.cpp
new file mode 100644
index 0000000..0d9a658
--- /dev/null
+++ b/src/core/NEON/kernels/convolution/winograd/weight_transforms/a64_fp16_4x4_3x3.cpp
@@ -0,0 +1,242 @@
+/*
+ * Copyright (c) 2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#if defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
+
+#include <cstddef>
+#include <arm_neon.h>
+
+namespace arm_conv {
+namespace winograd {
+namespace weight_transform {
+
+void a64_fp16_4x4_3x3(
+    unsigned int n_channels,
+    const __fp16* inptr,  // NOTE: Data in HWIO order
+    const size_t ld_weight_row,
+    const size_t ld_weight_col,
+    __fp16* outptr,
+    const size_t matrix_stride
+)
+{
+#ifdef __aarch64__
+    for (; n_channels >= 8; n_channels -= 8)
+    {
+      // Matrices used and computed in this kernel
+      float16x8_t w[3][3], Ww[6][3], V[6][6];
+
+      // Read weights
+      for (int i = 0; i < 3; i++)
+      {
+        for (int j = 0; j < 3; j++)
+        {
+          w[i][j] = vld1q_f16(inptr + i*ld_weight_row + j*ld_weight_col);
+        }
+      }
+
+      // Compute the matrix W w
+      for (int j = 0; j < 3; j++)
+      {
+        // Ww[0][j] =  6*w[0][j];
+        Ww[0][j] = vmulq_n_f16(w[0][j], 6.0);
+
+        // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
+        Ww[1][j] = vmulq_n_f16(vaddq_f16(vaddq_f16(w[0][j], w[1][j]), w[2][j]), -4.0);
+
+        // Ww[2][j] = -4*w[0][j] +  4*w[1][j] + -4*w[2][j];
+        Ww[2][j] = vmulq_n_f16(vsubq_f16(vsubq_f16(w[1][j], w[0][j]), w[2][j]), 4.0);
+
+        // Ww[3][j] =  1*w[0][j] +  2*w[1][j] +  4*w[2][j];
+        Ww[3][j] = vaddq_f16(vaddq_f16(w[0][j], vmulq_f16(w[1][j], vdupq_n_f16(2.0f))), vmulq_f16(w[2][j], vdupq_n_f16(4.0f)));
+
+        // Ww[4][j] =  1*w[0][j] + -2*w[1][j] +  4*w[2][j];
+        Ww[4][j] = vaddq_f16(vsubq_f16(w[0][j], vmulq_f16(w[1][j], vdupq_n_f16(2.0f))), vmulq_f16(w[2][j], vdupq_n_f16(4.0f)));
+
+        // Ww[5][j] = 24*w[2][j];
+        Ww[5][j] = vmulq_n_f16(w[2][j], 24.0f);
+      }
+
+      // Compute V = W w WT
+      for (int i = 0; i < 6; i++)
+      {
+        const float recip576 = 1.0f / 576.0f;
+
+        // V[i][0] =  6*Ww[i][0];
+        V[i][0] = vmulq_n_f16(vmulq_n_f16(Ww[i][0], 6.0), recip576);
+
+        // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
+        V[i][1] = vmulq_n_f16(vmulq_n_f16(vaddq_f16(vaddq_f16(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
+
+        // V[i][2] = -4*Ww[i][0] +  4*Ww[i][1] + -4*Ww[i][2];
+        V[i][2] = vmulq_n_f16(vmulq_n_f16(vsubq_f16(vsubq_f16(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
+
+        // V[i][3] =  1*Ww[i][0] +  2*Ww[i][1] +  4*Ww[i][2];
+        V[i][3] = vmulq_n_f16(vaddq_f16(vaddq_f16(Ww[i][0], vmulq_f16(Ww[i][1], vdupq_n_f16(2.0f))), vmulq_f16(Ww[i][2], vdupq_n_f16(4.0f))), recip576);
+
+        // V[i][4] =  1*Ww[i][0] + -2*Ww[i][1] +  4*Ww[i][2];
+        V[i][4] = vmulq_n_f16(vaddq_f16(vsubq_f16(Ww[i][0], vmulq_f16(Ww[i][1], vdupq_n_f16(2.0f))), vmulq_f16(Ww[i][2], vdupq_n_f16(4.0f))), recip576);
+
+        // V[i][5] = 24*Ww[i][2];
+        V[i][5] = vmulq_n_f16(vmulq_n_f16(Ww[i][2], 24.0f), recip576);
+      }
+
+      // Store the transformed weights
+      for (int i = 0, m = 0; i < 6; i++)
+      {
+        for (int j = 0; j < 6; j++, m++)
+        {
+          vst1q_f16(outptr + m*matrix_stride, V[i][j]);
+        }
+      }
+      inptr += 8;
+      outptr += 8;
+    }
+#endif  // __aarch64__
+#ifdef __arm_any__
+    for (; n_channels >= 4; n_channels -= 4)
+    {
+      // Matrices used and computed in this kernel
+      float16x4_t w[3][3], Ww[6][3], V[6][6];
+
+      // Read weights
+      for (int i = 0; i < 3; i++)
+      {
+        for (int j = 0; j < 3; j++)
+        {
+          w[i][j] = vld1_f16(inptr + i*ld_weight_row + j*ld_weight_col);
+        }
+      }
+
+      // Compute the matrix W w
+      for (int j = 0; j < 3; j++)
+      {
+        // Ww[0][j] =  6*w[0][j];
+        Ww[0][j] = vmul_n_f16(w[0][j], 6.0);
+
+        // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
+        Ww[1][j] = vmul_n_f16(vadd_f16(vadd_f16(w[0][j], w[1][j]), w[2][j]), -4.0);
+
+        // Ww[2][j] = -4*w[0][j] +  4*w[1][j] + -4*w[2][j];
+        Ww[2][j] = vmul_n_f16(vsub_f16(vsub_f16(w[1][j], w[0][j]), w[2][j]), 4.0);
+
+        // Ww[3][j] =  1*w[0][j] +  2*w[1][j] +  4*w[2][j];
+        Ww[3][j] = vadd_f16(vadd_f16(w[0][j], vmul_f16(w[1][j], vdup_n_f16(2.0f))), vmul_f16(w[2][j], vdup_n_f16(4.0f)));
+
+        // Ww[4][j] =  1*w[0][j] + -2*w[1][j] +  4*w[2][j];
+        Ww[4][j] = vadd_f16(vsub_f16(w[0][j], vmul_f16(w[1][j], vdup_n_f16(2.0f))), vmul_f16(w[2][j], vdup_n_f16(4.0f)));
+
+        // Ww[5][j] = 24*w[2][j];
+        Ww[5][j] = vmul_n_f16(w[2][j], 24.0f);
+      }
+
+      // Compute V = W w WT
+      for (int i = 0; i < 6; i++)
+      {
+        const float recip576 = 1.0f / 576.0f;
+
+        // V[i][0] =  6*Ww[i][0];
+        V[i][0] = vmul_n_f16(vmul_n_f16(Ww[i][0], 6.0), recip576);
+
+        // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
+        V[i][1] = vmul_n_f16(vmul_n_f16(vadd_f16(vadd_f16(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
+
+        // V[i][2] = -4*Ww[i][0] +  4*Ww[i][1] + -4*Ww[i][2];
+        V[i][2] = vmul_n_f16(vmul_n_f16(vsub_f16(vsub_f16(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
+
+        // V[i][3] =  1*Ww[i][0] +  2*Ww[i][1] +  4*Ww[i][2];
+        V[i][3] = vmul_n_f16(vadd_f16(vadd_f16(Ww[i][0], vmul_f16(Ww[i][1], vdup_n_f16(2.0f))), vmul_f16(Ww[i][2], vdup_n_f16(4.0f))), recip576);
+
+        // V[i][4] =  1*Ww[i][0] + -2*Ww[i][1] +  4*Ww[i][2];
+        V[i][4] = vmul_n_f16(vadd_f16(vsub_f16(Ww[i][0], vmul_f16(Ww[i][1], vdup_n_f16(2.0f))), vmul_f16(Ww[i][2], vdup_n_f16(4.0f))), recip576);
+
+        // V[i][5] = 24*Ww[i][2];
+        V[i][5] = vmul_n_f16(vmul_n_f16(Ww[i][2], 24.0f), recip576);
+      }
+
+      // Store the transformed weights
+      for (int i = 0, m = 0; i < 6; i++)
+      {
+        for (int j = 0; j < 6; j++, m++)
+        {
+          vst1_f16(outptr + m*matrix_stride, V[i][j]);
+        }
+      }
+      inptr += 4;
+      outptr += 4;
+    }
+#endif  // __arm_any__
+    for (; n_channels; n_channels--)
+    {
+      // Matrices used and computed in this kernel
+      __fp16 w[3][3], Ww[6][3], V[6][6];
+
+      // Read weights
+      for (int i = 0; i < 3; i++)
+      {
+        for (int j = 0; j < 3; j++)
+        {
+          w[i][j] = *(inptr + i*ld_weight_row + j*ld_weight_col);
+        }
+      }
+
+      // Compute the matrix W w
+      for (int j = 0; j < 3; j++)
+      {
+        Ww[0][j] =  6*w[0][j];
+        Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
+        Ww[2][j] = -4*w[0][j] +  4*w[1][j] + -4*w[2][j];
+        Ww[3][j] =  1*w[0][j] +  2*w[1][j] +  4*w[2][j];
+        Ww[4][j] =  1*w[0][j] + -2*w[1][j] +  4*w[2][j];
+        Ww[5][j] = 24*w[2][j];
+      }
+
+      // Compute V = W w WT
+      for (int i = 0; i < 6; i++)
+      {
+        V[i][0] = ( 6*Ww[i][0]) / 576.0;
+        V[i][1] = (-4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
+        V[i][2] = (-4*Ww[i][0] +  4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
+        V[i][3] = ( 1*Ww[i][0] +  2*Ww[i][1] +  4*Ww[i][2]) / 576.0;
+        V[i][4] = ( 1*Ww[i][0] + -2*Ww[i][1] +  4*Ww[i][2]) / 576.0;
+        V[i][5] = (24*Ww[i][2]) / 576.0;
+      }
+
+      // Store the transformed weights
+      for (int i = 0, m = 0; i < 6; i++)
+      {
+        for (int j = 0; j < 6; j++, m++)
+        {
+          *(outptr + m*matrix_stride) = V[i][j];
+        }
+      }
+
+      inptr++;
+      outptr++;
+    }
+}
+
+}  // namespace weight_transform
+}  // namespace winograd
+}  // namespace arm_conv
+
+#endif // defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)