blob: 52ff7b3798193ea440429a67cccd40f2e3716b83 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "arm_gemm_local.hpp"
#include "arm_gemm.hpp"
#include "winograd.hpp"
namespace winograd
{
class IWinogradConvolutionLayer
{
public:
virtual ~IWinogradConvolutionLayer() = default;
virtual unsigned int weight_transform_get_window(void) const = 0;
virtual void weight_transform_run(unsigned int start, unsigned int stop) = 0;
virtual IInputTransform& input_transform(void) = 0; // Expose the input transform
virtual IOutputTransform& output_transform(void) = 0; // Expose the output transform
virtual arm_gemm::IGemmCommon *gemm(void) = 0; // Expose the underlying GEMM
};
/** Example of how to construct an ACL-like interface.
*
* Use `get_weight_storage_size`, `get_input_storage_size` and
* `get_output_storage_size` to allocate memory for the convolution engine.
* Then create a `WinogradConvolutionLayer`.
*
* Initialise the weights using `weights_transform.run(...)`.
*
* For each inference:
* 1. Transform the inputs to the Winograd domain using `input_transform.run(...)`
* 2. Perform a number of GEMMs using `gemms.run(...)`
* 3. Transform the output to the spatial domain using `output_transform.run(...)`
*/
template <int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols,
typename TIn, typename TInGEMM, typename TOutGEMM, typename TOut,
WinogradRoots Roots>
class WinogradConvolutionLayer : public IWinogradConvolutionLayer
{
public:
using WinogradBase = winograd::WinogradGEMM<OutputTileRows, OutputTileCols, KernelRows, KernelCols, Roots>;
using WeightsTransform = typename WinogradBase::template WeightsTransform<TIn, TInGEMM>;
using InputTransform = typename WinogradBase::template InputTransform<TIn, TInGEMM>;
using WinogradConv = typename WinogradBase::template Convolution<TOut, TIn, TInGEMM, TOutGEMM>;
using OutputTransform = typename WinogradBase::template OutputTransform<TOutGEMM, TOut>;
private:
static constexpr int InnerTileRows = OutputTileRows + KernelRows - 1;
static constexpr int InnerTileCols = OutputTileCols + KernelCols - 1;
static constexpr int N_GEMMS = InnerTileRows * InnerTileCols;
const int _n_output_rows, _n_output_cols;
const int _kernel_matrix_stride, _kernel_matrix_row_stride;
const int _input_matrix_stride, _input_matrix_row_stride;
const int _output_matrix_stride, _output_matrix_row_stride;
const int _tile_rows, _tile_cols;
const int _m, _k, _n;
WeightsTransform weights_transform; /** Operator to transform weights to Winograd domain. */
InputTransform _input_transform; /** Operator to transform input to Winograd domain. */
const arm_gemm::GemmArgs gemm_args;
arm_gemm::UniqueGemmCommon<TInGEMM, TOutGEMM> gemms; /** Operator to perform multiple GEMMs. */
OutputTransform _output_transform; /** Operator to transform output from Winograd domain. */
public:
/** Determine how much memory (in units of TIn) to allocate for the
* transformed weights.
*/
static unsigned int get_weight_storage_size(
const int n_output_channels, /** Number of output feature maps. */
const int n_input_channels /** Number of input feature maps. */
);
static unsigned int get_weight_stride(
const int n_output_channels, /** Number of output feature maps. */
const int n_input_channels /** Number of input feature maps. */
);
static unsigned int get_weight_multi_stride(
const int n_output_channels, /** Number of output feature maps. */
const int n_input_channels /** Number of input feature maps. */
);
/** Determine how much memory (in units of TIn) to allocate for the
* transformed input.
*/
static unsigned int get_input_storage_size(
const int n_batches, /** Number of batches in the input tensor. */
const int n_channels, /** Number of feature maps in the input tensor. */
const int n_rows, /** Number of rows in each feature map. */
const int n_cols, /** Number of columns in each feature map. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
/** Get the row stride for the A matrix in the Winograd domain. */
static unsigned int get_input_stride(
const int n_batches, /** Number of batches in the input tensor. */
const int n_channels, /** Number of feature maps in the input tensor. */
const int n_rows, /** Number of rows in each feature map. */
const int n_cols, /** Number of columns in each feature map. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
/** Get the stride between A matrices in the Winograd domain. */
static unsigned int get_input_multi_stride(
const int n_batches, /** Number of batches in the input tensor. */
const int n_channels, /** Number of feature maps in the input tensor. */
const int n_rows, /** Number of rows in each feature map. */
const int n_cols, /** Number of columns in each feature map. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
/** Determine how much memory (in units of TOut) to allocate for the
* (Winograd domain) output.
*/
static unsigned int get_output_storage_size(
const int n_batches, /** Number of batches in the output tensor. */
const int n_rows, /** Number of rows in each feature map of the input tensor. */
const int n_cols, /** Number of columns in each feature map of the input tensor. */
const int n_output_channels, /** Number of feature maps in the output tensor. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
static unsigned int get_output_stride(
const int n_batches, /** Number of batches in the output tensor. */
const int n_rows, /** Number of rows in each feature map of the input tensor. */
const int n_cols, /** Number of columns in each feature map of the input tensor. */
const int n_output_channels, /** Number of feature maps in the output tensor. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
static unsigned int get_output_multi_stride(
const int n_batches, /** Number of batches in the output tensor. */
const int n_rows, /** Number of rows in each feature map of the input tensor. */
const int n_cols, /** Number of columns in each feature map of the input tensor. */
const int n_output_channels, /** Number of feature maps in the output tensor. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
/** Get the shape (rows, cols) of a feature map of the output tensor. */
static std::pair<int, int> get_output_feature_map_shape(
const int n_input_rows, /** Number of rows in the input feature map. */
const int n_input_cols, /** Number of columns in the input feature map. */
const bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
);
/** Create a new Winograd convolution layer.
*/
WinogradConvolutionLayer(
const CPUInfo &cpuinfo, /** Describes CPU properties. */
const int n_threads, /** Maximum number of threads used to execute the convolution. */
const int n_batches, /** Number of batches in the input and output tensors. */
const int n_input_channels, /** Number of feature maps in a batch of the input tensor. */
const int n_input_rows, /** Number of rows in a feature map of the input tensor. */
const int n_input_cols, /** Number of columns in a feature map of the input tensor. */
const int n_output_channels, /** Number of feature maps in the output tensor. */
const bool same_padding, /** Use "SAME" padding, otherwise use "VALID". */
const arm_gemm::Activation &activation,
const TIn* const weights, /** Pointer to weight tensor in spatial domain. Must be ordered as "Height x Rows x Input Feature Maps x Output Feature Maps. */
TInGEMM* const weights_storage, /** Pointer to storage for weight tensor in the Winograd domain. Must be at least the size returned by `get_weight_storage_size`. */
const TIn* const input, /** Pointer to NHWC ordered input tensor, in the spatial domain. */
TInGEMM* const winograd_input, /** Pointer to working space for the input tensor in the Winograd domain. Must be at least the size returned by `get_input_storage_size`. */
const TOut* const biases, /** Pointer to biases vector. Pass nullptr if no bias is provided. */
TOut* const output, /** Pointer to NHWC ordered output tensor, in the spatial domain. */
TOutGEMM* const winograd_output, /** Pointer to working space for the output tensor in the Winograd domain. Must be at least the size returned by `get_output_storage_size`. */
const bool pretranspose_B=true, /** Hint that the B matrix can be pretransposed. */
arm_gemm::GemmConfig *gemm_cfg=nullptr /** Pointer to GEMM configuration. */
);
/* Utility methods for interacting with the layer. */
unsigned int weight_transform_get_window(void) const;
void weight_transform_run(const unsigned int start, const unsigned int stop);
IInputTransform& input_transform(void);
IOutputTransform& output_transform(void);
/* Get a pointer to the GEMM underlying the Winograd transform. */
arm_gemm::IGemmCommon *gemm(void);
};
}