blob: 5b4c68ca1053a56bb7ccfcbaf311198bbf4e0afc [file] [log] [blame]
/*
* Copyright (c) 2017-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define PARTIAL_STORE_M0 VEC_SIZE_LEFTOVER_X
#define PARTIAL_STORE_N0 VEC_SIZE_LEFTOVER_Y
#include "helpers.h"
#include "repeat.h"
#if defined(DATA_TYPE_IN_BYTES) && defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X) && defined(VEC_SIZE_Y) && defined(VEC_SIZE_LEFTOVER_Y)
#if VEC_SIZE_X == 1
#if VEC_SIZE_Y == 1
#define TRANSPOSED_U(val) \
{ \
u0 \
}
#elif VEC_SIZE_Y == 2
#define TRANSPOSED_U(val) \
{ \
u0, u1 \
}
#elif VEC_SIZE_Y == 3
#define TRANSPOSED_U(val) \
{ \
u0, u1, u2 \
}
#elif VEC_SIZE_Y == 4
#define TRANSPOSED_U(val) \
{ \
u0, u1, u2, u3 \
}
#elif VEC_SIZE_Y == 8
#define TRANSPOSED_U(val) \
{ \
u0, u1, u2, u3, u4, u5, u6, u7 \
}
#elif VEC_SIZE_Y == 16
#define TRANSPOSED_U(val) \
{ \
u0, u1, u2, u3, u4, u5, u6, u7, \
u8, u9, u10, u11, u12, u13, u14, u15 \
}
#endif /* switch VEC_SIZE_Y */
#else // VEC_SIZE_X == 1
#if VEC_SIZE_Y == 1
#define TRANSPOSED_U(val) \
{ \
u0.val \
}
#elif VEC_SIZE_Y == 2
#define TRANSPOSED_U(val) \
{ \
u0.val, u1.val \
}
#elif VEC_SIZE_Y == 3
#define TRANSPOSED_U(val) \
{ \
u0.val, u1.val, u2.val \
}
#elif VEC_SIZE_Y == 4
#define TRANSPOSED_U(val) \
{ \
u0.val, u1.val, u2.val, u3.val \
}
#elif VEC_SIZE_Y == 8
#define TRANSPOSED_U(val) \
{ \
u0.val, u1.val, u2.val, u3.val, u4.val, u5.val, u6.val, u7.val \
}
#elif VEC_SIZE_Y == 16
#define TRANSPOSED_U(val) \
{ \
u0.val, u1.val, u2.val, u3.val, u4.val, u5.val, u6.val, u7.val, \
u8.val, u9.val, u10.val, u11.val, u12.val, u13.val, u14.val, u15.val \
}
#endif /* switch VEC_SIZE_Y */
#endif // VEC_SIZE_X == 1
#if DATA_TYPE_IN_BYTES == 4
#define DATA_TYPE uint
#elif DATA_TYPE_IN_BYTES == 2
#define DATA_TYPE ushort
#elif DATA_TYPE_IN_BYTES == 1
#define DATA_TYPE uchar
#else /* switch DATA_TYPE_IN_BYTES */
#error DATA_TYPE_IN_BYTES not supported for transpose
#endif /* switch DATA_TYPE_IN_BYTES */
/** This OpenCL kernel computes the matrix transposition of input matrix
*
* @note The number of bytes of the data type need to be passed at compile time using -DDATA_TYPE_IN_BYTES. DATA_TYPE_IN_BYTES can be:
* -# -DDATA_TYPE_IN_BYTES=1 for transposing U8 or S8 matrices
* -# -DDATA_TYPE_IN_BYTES=2 for transposing U16, S16 or FP16 matrices
* -# -DDATA_TYPE_IN_BYTES=4 for transposing U32, S32 or FP32 matrices
* -# -DVEC_SIZE_X is the number of elements processed in X dimension
* -# -DVEC_SIZE_LEFTOVER_X is the leftover size in the X dimension; x_dimension % VEC_SIZE_X
* -# -DVEC_SIZE_Y is the number of elements processed in Y dimension
* -# -DVEC_SIZE_LEFTOVER_Y is the leftover size in the Y dimension; y_dimension % VEC_SIZE_Y
*
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: All
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination matrix in Z dimension (in bytes)
* @param[in] dst_step_z dst_gx_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void transpose(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);
uint y_offs = max((int)(get_global_id(1) * VEC_SIZE_Y - (VEC_SIZE_Y - VEC_SIZE_LEFTOVER_Y) % VEC_SIZE_Y), 0);
uint z_offs = get_global_id(2);
// Compute addresses
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs * DATA_TYPE_IN_BYTES + y_offs * src_stride_y + z_offs * src_stride_z;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + y_offs * DATA_TYPE_IN_BYTES + x_offs * dst_stride_y + z_offs * dst_stride_z;
// Load the NxM block at (x, y)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u0 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)src_addr);
#if VEC_SIZE_Y > 1
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u1 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + src_stride_y));
#endif /* VEC_SIZE_Y > 1 */
#if VEC_SIZE_Y > 2
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u2 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y));
#endif /* VEC_SIZE_Y > 2 */
#if VEC_SIZE_Y > 3
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u3 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_y));
#endif /* VEC_SIZE_Y > 3 */
#if VEC_SIZE_Y > 4
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u4 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u5 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 5 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u6 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 6 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u7 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 7 * src_stride_y));
#endif /* VEC_SIZE_Y > 4 */
#if VEC_SIZE_Y > 8
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u8 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 8 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u9 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 9 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u10 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 10 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u11 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 11 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u12 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 12 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u13 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 13 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u14 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 14 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
u15 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 15 * src_stride_y));
#endif /* VEC_SIZE_Y > 8 */
//Create transposed vectors
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t0 = TRANSPOSED_U(s0);
#if VEC_SIZE_X > 1
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t1 = TRANSPOSED_U(s1);
#endif /* VEC_SIZE_X > 1 */
#if VEC_SIZE_X > 2
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t2 = TRANSPOSED_U(s2);
#endif /* VEC_SIZE_X > 2 */
#if VEC_SIZE_X > 3
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t3 = TRANSPOSED_U(s3);
#endif /* VEC_SIZE_X > 3 */
#if VEC_SIZE_X > 4
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t4 = TRANSPOSED_U(s4);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t5 = TRANSPOSED_U(s5);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t6 = TRANSPOSED_U(s6);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t7 = TRANSPOSED_U(s7);
#endif /* VEC_SIZE_X > 4 */
#if VEC_SIZE_X > 8
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t8 = TRANSPOSED_U(s8);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
t9 = TRANSPOSED_U(s9);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tA = TRANSPOSED_U(sA);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tB = TRANSPOSED_U(sB);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tC = TRANSPOSED_U(sC);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tD = TRANSPOSED_U(sD);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tE = TRANSPOSED_U(sE);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
tF = TRANSPOSED_U(sF);
#endif /* VEC_SIZE_X > 8 */
// Store the block at (y, x)
REPEAT_VAR_INIT_TO_CONST(VEC_SIZE_X, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
STORE_BLOCK_BOUNDARY_AWARE(VEC_SIZE_X, VEC_SIZE_Y, DATA_TYPE, t, (__global uchar *)dst_addr, dst_stride_y, zout, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_Y, VEC_SIZE_LEFTOVER_X != 0
&& get_global_id(0) == 0,
VEC_SIZE_LEFTOVER_Y != 0 && get_global_id(1) == 0);
}
#endif // defined(DATA_TYPE_IN_BYTES) && defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X) && defined(VEC_SIZE_Y) && defined(VEC_SIZE_LEFTOVER_Y)