Add post ops to ClGemmMatrixMultiplyReshapedOnlyRHSKernel and ClGemmMatrixMultiplyNativeKernel Part 3

Partially resolves: COMPMID-4435

Change-Id: Ifc5affa3a24a70942ca2d001380205df09b03ad7
Signed-off-by: SiCongLi <sicong.li@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6550
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
new file mode 100644
index 0000000..e53ce3d
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
@@ -0,0 +1,366 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "fp_post_ops_act_eltwise_op_act.h"
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+/** (EXPERIMENTAL_POST_OPS) gemm_mm_native kernel */
+#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
+#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+
+#define VFMA(a, b, c)     \
+    ({                    \
+        c = fma(a, b, c); \
+    })
+
+#if M0 == 1
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+    })
+#elif M0 == 2 // M0 == 2
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+    })
+#elif M0 == 3 // M0 == 3
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+    })
+#elif M0 == 4 // M0 == 4
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+    })
+#elif M0 == 5 // M0 == 5
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+    })
+#elif M0 == 6 // M0 == 6
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+    })
+#elif M0 == 7 // M0 == 7
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+    })
+#elif M0 == 8 // M0 == 8
+#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
+    ({                                                                \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
+    })
+#else // M0 not supported
+#error "M0 not supported"
+#endif // M0 not supported
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_native, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr      Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x   eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y   eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+                                                     IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+                                                     IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+                                                     IMAGE_DECLARATION(dst),
+                                                     // Post-Op arguments
+                                                     IMAGE_DECLARATION(eltwise_operand),
+                                                     uint lhs_stride_z,
+                                                     uint rhs_stride_z,
+#if defined(BETA)
+                                                     uint bias_stride_z,
+#endif //defined(BETA)
+                                                     uint dst_stride_z,
+                                                     uint eltwise_operand_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+                                                     ,
+                                                     uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+                                                     ,
+                                                     uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+                                                    )
+{
+    // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+    // RHS offset and step X
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+
+    uint x = get_global_id(0);
+    uint y = get_global_id(1);
+    uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+    if((x * N0 >= N) || (y * M0 >= M))
+    {
+        return;
+    }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+    // Compute LHS matrix address
+    uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
+
+    // Compute RHS matrix address
+    uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
+
+#if defined(MATRIX_B_DEPTH)
+    // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+    rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else  // defined(MATRIX_B_DEPTH)
+    rhs_offset += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+    REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
+    REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+    // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+    CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+    // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+    // multiply lhs_stride_z by DEPTH_GEMM3D
+    lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+    // Add offset for batched GEMM
+    lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+    // Initialize the accumulators
+    REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0)    c0=0,c1=0,c2=0,... c(M0-1)=0;
+
+    int i = 0;
+#if K0 > 1
+    for(; i <= (K - K0); i += K0)
+    {
+        // Supported cases (M0, K0):
+        // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
+        // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
+        // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
+        // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
+        // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
+        // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
+        // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
+        // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
+        // Load values from LHS matrix
+        LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+        // Load values from RHS matrix
+        LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);
+
+        RHS_VFMA_M0xN0(0, a, b0, c);
+        RHS_VFMA_M0xN0(1, a, b1, c);
+#if K0 > 2
+        RHS_VFMA_M0xN0(2, a, b2, c);
+#endif // K0 > 2
+#if K0 > 3
+        RHS_VFMA_M0xN0(3, a, b3, c);
+#endif // K0 > 3
+#if K0 > 4
+        RHS_VFMA_M0xN0(4, a, b4, c);
+        RHS_VFMA_M0xN0(5, a, b5, c);
+        RHS_VFMA_M0xN0(6, a, b6, c);
+        RHS_VFMA_M0xN0(7, a, b7, c);
+#endif // K0 > 4
+#if K0 > 8
+        RHS_VFMA_M0xN0(8, a, b8, c);
+        RHS_VFMA_M0xN0(9, a, b9, c);
+        RHS_VFMA_M0xN0(A, a, bA, c);
+        RHS_VFMA_M0xN0(B, a, bB, c);
+        RHS_VFMA_M0xN0(C, a, bC, c);
+        RHS_VFMA_M0xN0(D, a, bD, c);
+        RHS_VFMA_M0xN0(E, a, bE, c);
+        RHS_VFMA_M0xN0(F, a, bF, c);
+#endif // K0 > 8
+
+        lhs_offset += K0 * sizeof(DATA_TYPE);
+        rhs_offset += K0 * rhs_stride_y;
+    }
+#endif // K0 > 1
+    // Left-over accumulations
+    for(; i < K; ++i)
+    {
+        // Load values from LHS matrix
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
+#if M0 > 1
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
+#endif // M0 > 1
+#if M0 > 2
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
+#endif // M0 > 2
+#if M0 > 3
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
+#endif // M0 > 3
+#if M0 > 4
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
+#endif // M0 > 4
+#if M0 > 5
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
+#endif // M0 > 5
+#if M0 > 6
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
+#endif // M0 > 6
+#if M0 > 7
+        VEC_DATA_TYPE(DATA_TYPE, 2)
+        a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
+#endif // M0 > 7
+
+        VEC_DATA_TYPE(DATA_TYPE, N0)
+        b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
+        RHS_VFMA_M0xN0(0, a, b, c);
+
+        lhs_offset += sizeof(DATA_TYPE);
+        rhs_offset += rhs_stride_y;
+    }
+
+    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y);
+
+    REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+    // Boundary conditions: detect if current block is at the "bottom" or "right" boundary
+    const bool cond_y = ((y + 1) * M0 >= M);
+    const bool cond_x = ((x + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+    // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+    CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+    // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+    // multiply dst_stride_z by DEPTH_GEMM3D
+    dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+    // Add offset for batched GEMM
+    dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+    // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+    SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+    // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+    __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+    LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+    SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+    // c = c + bias[broadcasted]
+    ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+    __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+                                    2) * bias_stride_z;
+
+    LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+    SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+    // c = c + bias
+    ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+    // c = act(c)
+    POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+    // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+    POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+    // c = act(c)
+    POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+    // Store output block
+    STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+}
+#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)