Apply clang-format on repository

Code is formatted as per a revised clang format configuration
file(not part of this delivery). Version 14.0.6 is used.

Exclusion List:
- files with .cl extension
- files that are not strictly C/C++ (e.g. Android.bp, Sconscript ...)
And the following directories
- compute_kernel_writer/validation/
- tests/
- include/
- src/core/NEON/kernels/convolution/
- src/core/NEON/kernels/arm_gemm/
- src/core/NEON/kernels/arm_conv/
- data/

There will be a follow up for formatting of .cl files and the
files under tests/ and compute_kernel_writer/validation/.

Signed-off-by: Felix Thomasmathibalan <felixjohnny.thomasmathibalan@arm.com>
Change-Id: Ib7eb1fcf4e7537b9feaefcfc15098a804a3fde0a
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/10391
Benchmark: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Gunes Bayir <gunes.bayir@arm.com>
diff --git a/src/cpu/kernels/pool2d/neon/fp16.cpp b/src/cpu/kernels/pool2d/neon/fp16.cpp
index 4e15d3a..4af59c2 100644
--- a/src/cpu/kernels/pool2d/neon/fp16.cpp
+++ b/src/cpu/kernels/pool2d/neon/fp16.cpp
@@ -25,8 +25,9 @@
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
 #include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
 #include "src/cpu/kernels/pool2d/neon/list.h"
 
 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
@@ -37,7 +38,12 @@
 {
 namespace
 {
-void pooling2_f16_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_f16_maxpool_indices(const ITensor    *src,
+                                  ITensor          *dst0,
+                                  ITensor          *dst1,
+                                  PoolingLayerInfo &pool_info,
+                                  const Window     &window_src,
+                                  const Window     &window)
 {
     const int window_start_x = window.x().start();
     const int window_end_x   = window.x().end();
@@ -53,8 +59,8 @@
     const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
     const int pool_pad_left = pool_info.pad_stride_info.pad_left();
 
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
+    int pool_stride_x                      = 0;
+    int pool_stride_y                      = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
 
     const int pad_right      = src->info()->padding().right;
@@ -63,97 +69,114 @@
     const int in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());
     const int in_stride_z    = static_cast<int>(src->info()->strides_in_bytes().z());
 
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
-        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
-        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+    execute_window_loop(
+        window_out,
+        [&](const Coordinates &id)
         {
-            const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off;
-            const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off;
-            const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off;
-            const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off;
-            const auto  v_x0      = vld1q_f16(in_x0_ptr);
-            const auto  v_x1      = vld1q_f16(in_x1_ptr);
-            const auto  v_x2      = vld1q_f16(in_x2_ptr);
-            const auto  v_x3      = vld1q_f16(in_x3_ptr);
-            float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
-            // Store result
-            vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
+            const int idx_width    = id.y() * pool_stride_x;
+            const int idx_height   = id.z() * pool_stride_y;
+            const int pool_limit_y = pool_pad_top - idx_height;
+            const int pool_limit_x = pool_pad_left - idx_width;
 
-            const uint32_t   offset_base    = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
-            const uint32_t   offset_x0      = (uint32_t)offset_base / sizeof(float16_t) + x_off;
-            const uint32_t   offset_x1      = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
-            const uint32_t   offset_x2      = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_horizontal * src->info()->tensor_shape()[1];
-            const uint32_t   offset_x3      = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
-            const uint32x4_t voffset_x0_0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
-            const uint32x4_t voffset_x0_1   = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
-            const uint16x8_t voffset_x0     = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
-            const uint32x4_t voffset_x1_0   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
-            const uint32x4_t voffset_x1_1   = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
-            const uint16x8_t voffset_x1     = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
-            const uint32x4_t voffset_x2_0   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
-            const uint32x4_t voffset_x2_1   = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
-            const uint16x8_t voffset_x2     = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
-            const uint32x4_t voffset_x3_0   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
-            const uint32x4_t voffset_x3_1   = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
-            const uint16x8_t voffset_x3     = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
-            const uint16x8_t tmp_indices0   = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
-            const uint16x8_t tmp_indices1   = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
-            const uint16x8_t tmp_indices2   = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
-            const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
-            const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
-            // Store indicies
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
-        }
+            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+            const int in_x0_offset =
+                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x1_offset =
+                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x2_offset =
+                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x3_offset =
+                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
 
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            const auto x0  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off);
-            const auto x1  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off);
-            const auto x2  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off);
-            const auto x3  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off);
-            float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));
+            int x_off = window_start_x;
+            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+            {
+                const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off;
+                const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off;
+                const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off;
+                const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off;
+                const auto  v_x0      = vld1q_f16(in_x0_ptr);
+                const auto  v_x1      = vld1q_f16(in_x1_ptr);
+                const auto  v_x2      = vld1q_f16(in_x2_ptr);
+                const auto  v_x3      = vld1q_f16(in_x3_ptr);
+                float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
+                // Store result
+                vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
 
-            // Store result
-            *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
+                const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
+                                                                          pool_stride_y, DataLayout::NHWC);
+                const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+                const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+                const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
+                                           pad_horizontal * src->info()->tensor_shape()[1];
+                const uint32_t   offset_x3    = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+                const uint32x4_t voffset_x0_0 = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
+                const uint32x4_t voffset_x0_1 = {offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7};
+                const uint16x8_t voffset_x0   = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
+                const uint32x4_t voffset_x1_0 = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
+                const uint32x4_t voffset_x1_1 = {offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7};
+                const uint16x8_t voffset_x1   = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
+                const uint32x4_t voffset_x2_0 = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
+                const uint32x4_t voffset_x2_1 = {offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7};
+                const uint16x8_t voffset_x2   = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
+                const uint32x4_t voffset_x3_0 = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
+                const uint32x4_t voffset_x3_1 = {offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7};
+                const uint16x8_t voffset_x3   = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
+                const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
+                const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
+                const uint16x8_t tmp_indices2 =
+                    vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+                const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
+                const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
+                // Store indicies
+                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
+                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
+            }
 
-            const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
-            const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
-            const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
-            const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_horizontal * src->info()->tensor_shape()[1];
-            const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
-            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
-            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
-            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+            // Left-overs loop
+            for (; x_off < window_end_x; ++x_off)
+            {
+                const auto x0  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off);
+                const auto x1  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off);
+                const auto x2  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off);
+                const auto x3  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off);
+                float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));
 
-            // Store indices
-            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
-        }
-    },
-    in, out, indices);
+                // Store result
+                *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
+
+                const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
+                                                                          pool_stride_y, DataLayout::NHWC);
+                const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+                const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+                const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
+                                           pad_horizontal * src->info()->tensor_shape()[1];
+                const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+                const uint32_t tmp_idx0  = (x0 >= x1) ? offset_x0 : offset_x1;
+                const uint32_t tmp_idx1  = (x2 >= x3) ? offset_x2 : offset_x3;
+                const uint32_t tmp_idx2  = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+                // Store indices
+                *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+            }
+        },
+        in, out, indices);
 }
-}
+} // namespace
 
-void poolingMxN_fp16_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp16_neon_nhwc(const ITensor    *src,
+                               ITensor          *dst0,
+                               ITensor          *dst1,
+                               PoolingLayerInfo &pool_info,
+                               const Window     &window_src,
+                               const Window     &window)
 {
-    if(pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1)
+    if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1)
     {
         pooling2_f16_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
     }
@@ -167,151 +190,172 @@
     Iterator in(src, window_src);
     Iterator out(dst0, window_out);
 
-    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
-    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
-    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
+    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x                = 0;
+    int       pool_stride_y                = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
     const int       upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
     const int       upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
     const float16_t min_value     = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
     float16x8_t     vres;
 
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
-        const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
-        const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+    execute_window_loop(
+        window_out,
+        [&](const Coordinates &id)
         {
-            if(pool_info.pool_type != PoolingType::MAX)
+            const int idx_width    = id.y() * pool_stride_x;
+            const int idx_height   = id.z() * pool_stride_y;
+            const int pool_limit_y = pool_pad_top - idx_height;
+            const int pool_limit_x = pool_pad_left - idx_width;
+
+            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+            const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+            const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+            int x_off = window_start_x;
+            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
             {
-                // Calculate scale
-                const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                               pool_stride_y);
-                const float16x8_t scale_v = vdupq_n_f16(scale);
-
-                // Perform pooling
-                vres = vdupq_n_f16(0.0f);
-                for(int y = pool_start_y; y < pool_end_y; ++y)
+                if (pool_info.pool_type != PoolingType::MAX)
                 {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (src->info()->strides_in_bytes().z())) + x_off);
+                    // Calculate scale
+                    const float scale = calculate_avg_scale_pool2d(
+                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                    const float16x8_t scale_v = vdupq_n_f16(scale);
 
-                        // Get power of 2 in case of l2 pooling and accumulate
-                        if(pool_info.pool_type == PoolingType::L2)
+                    // Perform pooling
+                    vres = vdupq_n_f16(0.0f);
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
                         {
-                            vres = vaddq_f16(vres, vmulq_f16(data, data));
-                        }
-                        else
-                        {
-                            vres = vaddq_f16(vres, data);
+                            const float16x8_t data = vld1q_f16(
+                                reinterpret_cast<const float16_t *>(
+                                    in.ptr() +
+                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                x_off);
+
+                            // Get power of 2 in case of l2 pooling and accumulate
+                            if (pool_info.pool_type == PoolingType::L2)
+                            {
+                                vres = vaddq_f16(vres, vmulq_f16(data, data));
+                            }
+                            else
+                            {
+                                vres = vaddq_f16(vres, data);
+                            }
                         }
                     }
+                    // Divide by scale
+                    vres = vmulq_f16(vres, scale_v);
                 }
-                // Divide by scale
-                vres = vmulq_f16(vres, scale_v);
-            }
-            else
-            {
-                vres = vdupq_n_f16(min_value);
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
+                else
                 {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    vres = vdupq_n_f16(min_value);
+
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
                     {
-                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (src->info()->strides_in_bytes().z())) + x_off);
-                        vres                   = vmaxq_f16(vres, data);
-                    }
-                }
-            }
-
-            // Calculate square-root in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
-            {
-                float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
-                vres                        = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
-            }
-
-            // Store result
-            vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            float16_t res = 0.0f;
-
-            if(pool_info.pool_type != PoolingType::MAX)
-            {
-                // Calculate scale
-                const float16_t scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                                   pool_stride_y);
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (src->info()->strides_in_bytes().z())) + x_off);
-
-                        // Get power of 2 in case of l2 pooling and accumulate
-                        if(pool_info.pool_type == PoolingType::L2)
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
                         {
-                            res += data * data;
-                        }
-                        else
-                        {
-                            res += data;
+                            const float16x8_t data = vld1q_f16(
+                                reinterpret_cast<const float16_t *>(
+                                    in.ptr() +
+                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                x_off);
+                            vres = vmaxq_f16(vres, data);
                         }
                     }
                 }
 
-                // Divide by scale
-                res *= scale;
-            }
-            else
-            {
-                res = min_value;
-                for(int y = pool_start_y; y < pool_end_y; ++y)
+                // Calculate square-root in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
                 {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
+                    vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal),
+                                                     sqrt_reciprocal));
+                }
+
+                // Store result
+                vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
+            }
+
+            // Left-overs loop
+            for (; x_off < window_end_x; ++x_off)
+            {
+                float16_t res = 0.0f;
+
+                if (pool_info.pool_type != PoolingType::MAX)
+                {
+                    // Calculate scale
+                    const float16_t scale = calculate_avg_scale_pool2d(
+                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
                     {
-                        const float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                     (src->info()->strides_in_bytes().z())) + x_off);
-                        res                  = std::max(res, data);
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float data =
+                                *(reinterpret_cast<const float16_t *>(
+                                      in.ptr() +
+                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                  x_off);
+
+                            // Get power of 2 in case of l2 pooling and accumulate
+                            if (pool_info.pool_type == PoolingType::L2)
+                            {
+                                res += data * data;
+                            }
+                            else
+                            {
+                                res += data;
+                            }
+                        }
+                    }
+
+                    // Divide by scale
+                    res *= scale;
+                }
+                else
+                {
+                    res = min_value;
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const float16_t data =
+                                *(reinterpret_cast<const float16_t *>(
+                                      in.ptr() +
+                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                  x_off);
+                            res = std::max(res, data);
+                        }
                     }
                 }
-            }
 
-            // Calculate square-root in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
-            {
-                res = std::sqrt(res);
-            }
+                // Calculate square-root in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
+                {
+                    res = std::sqrt(res);
+                }
 
-            // Store result
-            *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
-        }
-    },
-    in, out);
+                // Store result
+                *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
+            }
+        },
+        in, out);
 }
 } // namespace cpu
 } // namespace arm_compute
 
-#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
\ No newline at end of file
+#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
diff --git a/src/cpu/kernels/pool2d/neon/fp32.cpp b/src/cpu/kernels/pool2d/neon/fp32.cpp
index a400f3a..aaa3786 100644
--- a/src/cpu/kernels/pool2d/neon/fp32.cpp
+++ b/src/cpu/kernels/pool2d/neon/fp32.cpp
@@ -24,8 +24,9 @@
 #include "arm_compute/core/Helpers.h"
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/Types.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
 #include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
 #include "src/cpu/kernels/pool2d/neon/list.h"
 
 namespace arm_compute
@@ -34,7 +35,12 @@
 {
 namespace
 {
-void pooling2_f32_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_f32_maxpool_indices(const ITensor    *src,
+                                  ITensor          *dst0,
+                                  ITensor          *dst1,
+                                  PoolingLayerInfo &pool_info,
+                                  const Window     &window_src,
+                                  const Window     &window)
 {
     const int window_start_x = window.x().start();
     const int window_end_x   = window.x().end();
@@ -50,8 +56,8 @@
     const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
     const int pool_pad_left = pool_info.pad_stride_info.pad_left();
 
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
+    int pool_stride_x                      = 0;
+    int pool_stride_y                      = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
 
     float32x4_t vres;
@@ -63,89 +69,102 @@
     const int in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());
     const int in_stride_z    = static_cast<int>(src->info()->strides_in_bytes().z());
 
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
-
-        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
-        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (src->info()->strides_in_bytes().z());
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+    execute_window_loop(
+        window_out,
+        [&](const Coordinates &id)
         {
-            const auto in_x0_ptr = reinterpret_cast<const float *>(in.ptr() + in_x0_offset);
-            const auto in_x1_ptr = reinterpret_cast<const float *>(in.ptr() + in_x1_offset);
-            const auto in_x2_ptr = reinterpret_cast<const float *>(in.ptr() + in_x2_offset);
-            const auto in_x3_ptr = reinterpret_cast<const float *>(in.ptr() + in_x3_offset);
-            const auto v_x0      = vld1q_f32(in_x0_ptr + x_off);
-            const auto v_x1      = vld1q_f32(in_x1_ptr + x_off);
-            const auto v_x2      = vld1q_f32(in_x2_ptr + x_off);
-            const auto v_x3      = vld1q_f32(in_x3_ptr + x_off);
-            vres                 = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
-            // Store result
-            vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+            const int idx_width    = id.y() * pool_stride_x;
+            const int idx_height   = id.z() * pool_stride_y;
+            const int pool_limit_y = pool_pad_top - idx_height;
+            const int pool_limit_x = pool_pad_left - idx_width;
 
-            const uint32_t   offset_base  = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
-            const uint32_t   offset_x0    = offset_base / sizeof(float) + x_off;
-            const uint32_t   offset_x1    = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
-            const uint32_t   offset_x2    = offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
-            const uint32_t   offset_x3    = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
-            const uint32x4_t voffset_x0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
-            const uint32x4_t voffset_x1   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
-            const uint32x4_t voffset_x2   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
-            const uint32x4_t voffset_x3   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
-            const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
-            const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
-            const uint32x4_t tmp_indices2 = vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
 
-            // Store indices
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
-        }
+            const int in_x0_offset =
+                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x1_offset =
+                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x2_offset =
+                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+            const int in_x3_offset =
+                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
 
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            const auto x0 = *(reinterpret_cast<const float *>(in.ptr() + in_x0_offset) + x_off);
-            const auto x1 = *(reinterpret_cast<const float *>(in.ptr() + in_x1_offset) + x_off);
-            const auto x2 = *(reinterpret_cast<const float *>(in.ptr() + in_x2_offset) + x_off);
-            const auto x3 = *(reinterpret_cast<const float *>(in.ptr() + in_x3_offset) + x_off);
-            res           = std::max(std::max(x2, x3), std::max(x0, x1));
+            int x_off = window_start_x;
+            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+            {
+                const auto in_x0_ptr = reinterpret_cast<const float *>(in.ptr() + in_x0_offset);
+                const auto in_x1_ptr = reinterpret_cast<const float *>(in.ptr() + in_x1_offset);
+                const auto in_x2_ptr = reinterpret_cast<const float *>(in.ptr() + in_x2_offset);
+                const auto in_x3_ptr = reinterpret_cast<const float *>(in.ptr() + in_x3_offset);
+                const auto v_x0      = vld1q_f32(in_x0_ptr + x_off);
+                const auto v_x1      = vld1q_f32(in_x1_ptr + x_off);
+                const auto v_x2      = vld1q_f32(in_x2_ptr + x_off);
+                const auto v_x3      = vld1q_f32(in_x3_ptr + x_off);
+                vres                 = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
+                // Store result
+                vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
 
-            // Store result
-            *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+                const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
+                                                                      pool_stride_y, DataLayout::NHWC);
+                const uint32_t offset_x0   = offset_base / sizeof(float) + x_off;
+                const uint32_t offset_x1   = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
+                const uint32_t offset_x2 =
+                    offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
+                const uint32_t   offset_x3    = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
+                const uint32x4_t voffset_x0   = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
+                const uint32x4_t voffset_x1   = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
+                const uint32x4_t voffset_x2   = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
+                const uint32x4_t voffset_x3   = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
+                const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
+                const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
+                const uint32x4_t tmp_indices2 =
+                    vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
 
-            const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
-            const uint32_t offset_x0   = offset_base / sizeof(float) + x_off;
-            const uint32_t offset_x1   = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
-            const uint32_t offset_x2   = offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
-            const uint32_t offset_x3   = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
-            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
-            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
-            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+                // Store indices
+                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
+            }
 
-            // Store indices
-            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
-        }
-    },
-    in, out, indices);
+            // Left-overs loop
+            for (; x_off < window_end_x; ++x_off)
+            {
+                const auto x0 = *(reinterpret_cast<const float *>(in.ptr() + in_x0_offset) + x_off);
+                const auto x1 = *(reinterpret_cast<const float *>(in.ptr() + in_x1_offset) + x_off);
+                const auto x2 = *(reinterpret_cast<const float *>(in.ptr() + in_x2_offset) + x_off);
+                const auto x3 = *(reinterpret_cast<const float *>(in.ptr() + in_x3_offset) + x_off);
+                res           = std::max(std::max(x2, x3), std::max(x0, x1));
+
+                // Store result
+                *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+
+                const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
+                                                                      pool_stride_y, DataLayout::NHWC);
+                const uint32_t offset_x0   = offset_base / sizeof(float) + x_off;
+                const uint32_t offset_x1   = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
+                const uint32_t offset_x2 =
+                    offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
+                const uint32_t offset_x3 = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
+                const uint32_t tmp_idx0  = (x0 >= x1) ? offset_x0 : offset_x1;
+                const uint32_t tmp_idx1  = (x2 >= x3) ? offset_x2 : offset_x3;
+                const uint32_t tmp_idx2  = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+                // Store indices
+                *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+            }
+        },
+        in, out, indices);
 }
 } // namespace
 
-void poolingMxN_fp32_neon_nhwc_kernel_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, const PoolingLayerInfo &pool_info, const Window &window)
+void poolingMxN_fp32_neon_nhwc_kernel_indices(
+    const ITensor *src, ITensor *dst0, ITensor *dst1, const PoolingLayerInfo &pool_info, const Window &window)
 {
-    const int window_start_x     = window.x().start();
-    const int window_end_x       = window.x().end();
+    const int     window_start_x = window.x().start();
+    const int     window_end_x   = window.x().end();
     constexpr int window_step_x  = 4;
 
     Window window_out = window;
@@ -160,8 +179,8 @@
     const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
     const int pool_pad_left = pool_info.pad_stride_info.pad_left();
 
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
+    int pool_stride_x                      = 0;
+    int pool_stride_y                      = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
 
     const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
@@ -169,9 +188,9 @@
     float32x4_t vres;
     uint32x4_t  vidx;
 
-    constexpr int idx_width   = 1;
-    constexpr int idx_height  = 2;
-    constexpr int idx_batch   = 3;
+    constexpr int idx_width  = 1;
+    constexpr int idx_height = 2;
+    constexpr int idx_batch  = 3;
 
     const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
     const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
@@ -182,89 +201,97 @@
 
     const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
 
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width  = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
-        const int idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
-
-        const int pool_start_x = std::max(0, -idx_width);
-        const int pool_start_y = std::max(0, -idx_height);
-
-        const int pool_end_x = std::min(pool_size_x, input_dim_w - idx_width);
-        const int pool_end_y = std::min(pool_size_y, input_dim_h - idx_height);
-
-        const uint8_t *in_ptr_n = in_ptr_start + id[idx_batch] * n_stride;
-
-        const int in_ptr_y_offset = (z_stride * idx_height) + (pool_start_y * z_stride);
-        const int in_ptr_x_offset = (y_stride * idx_width) + (pool_start_x * y_stride);
-
-        int x_off = window_start_x;
-
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+    execute_window_loop(
+        window_out,
+        [&](const Coordinates &id)
         {
-            vres              = vdupq_n_f32(min_value);
-            vidx              = vdupq_n_u32(0U);
-            const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
-            uint32_t    curr_kernel_index = pool_size_x * pool_start_y;
-            for(int y = pool_start_y; y < pool_end_y; ++y)
-            {
-                const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
-                curr_kernel_index += pool_start_x;
-                for(int x = pool_start_x; x < pool_end_x; ++x)
-                {
-                    const float32x4_t data              = vld1q_f32(reinterpret_cast<const float *>(in_ptr_x));
-                    const uint32x4_t  vidx_curr         = vdupq_n_u32(curr_kernel_index);
-                    const uint32x4_t idxMask = vcgtq_f32(data, vres);
-                    vidx                     = vbslq_u32(idxMask, vidx_curr, vidx);
-                    vres                     = vmaxq_f32(vres, data);
-                    in_ptr_x += y_stride;
-                    curr_kernel_index++;
-                }
-                curr_kernel_index += (pool_size_x - pool_end_x);
-                in_ptr_y += z_stride;
-            }
-            // Store result
-            vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, vidx);
-        }
+            const int idx_width  = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
+            const int idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
 
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            float    res      = min_value;
-            uint32_t idx      = 0U;
-            const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
-            for(int y = pool_start_y; y < pool_end_y; ++y)
+            const int pool_start_x = std::max(0, -idx_width);
+            const int pool_start_y = std::max(0, -idx_height);
+
+            const int pool_end_x = std::min(pool_size_x, input_dim_w - idx_width);
+            const int pool_end_y = std::min(pool_size_y, input_dim_h - idx_height);
+
+            const uint8_t *in_ptr_n = in_ptr_start + id[idx_batch] * n_stride;
+
+            const int in_ptr_y_offset = (z_stride * idx_height) + (pool_start_y * z_stride);
+            const int in_ptr_x_offset = (y_stride * idx_width) + (pool_start_x * y_stride);
+
+            int x_off = window_start_x;
+
+            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
             {
-                const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
-                for(int x = pool_start_x; x < pool_end_x; ++x)
+                vres                             = vdupq_n_f32(min_value);
+                vidx                             = vdupq_n_u32(0U);
+                const uint8_t *in_ptr_y          = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
+                uint32_t       curr_kernel_index = pool_size_x * pool_start_y;
+                for (int y = pool_start_y; y < pool_end_y; ++y)
                 {
-                    const float data = *(reinterpret_cast<const float *>(in_ptr_x));
-                    if(data > res)
+                    const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
+                    curr_kernel_index += pool_start_x;
+                    for (int x = pool_start_x; x < pool_end_x; ++x)
                     {
-                        idx = pool_size_x * y + x;
-                        res = data;
+                        const float32x4_t data      = vld1q_f32(reinterpret_cast<const float *>(in_ptr_x));
+                        const uint32x4_t  vidx_curr = vdupq_n_u32(curr_kernel_index);
+                        const uint32x4_t  idxMask   = vcgtq_f32(data, vres);
+                        vidx                        = vbslq_u32(idxMask, vidx_curr, vidx);
+                        vres                        = vmaxq_f32(vres, data);
+                        in_ptr_x += y_stride;
+                        curr_kernel_index++;
                     }
-                    in_ptr_x += y_stride;
+                    curr_kernel_index += (pool_size_x - pool_end_x);
+                    in_ptr_y += z_stride;
                 }
-                in_ptr_y += z_stride;
+                // Store result
+                vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, vidx);
             }
 
-            // Store result
-            *(reinterpret_cast<float *>(out.ptr()) + x_off)        = res;
-            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = idx;
-        }
-    },
-    out, indices);
+            // Left-overs loop
+            for (; x_off < window_end_x; ++x_off)
+            {
+                float          res      = min_value;
+                uint32_t       idx      = 0U;
+                const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
+                for (int y = pool_start_y; y < pool_end_y; ++y)
+                {
+                    const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
+                    for (int x = pool_start_x; x < pool_end_x; ++x)
+                    {
+                        const float data = *(reinterpret_cast<const float *>(in_ptr_x));
+                        if (data > res)
+                        {
+                            idx = pool_size_x * y + x;
+                            res = data;
+                        }
+                        in_ptr_x += y_stride;
+                    }
+                    in_ptr_y += z_stride;
+                }
+
+                // Store result
+                *(reinterpret_cast<float *>(out.ptr()) + x_off)        = res;
+                *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = idx;
+            }
+        },
+        out, indices);
 }
 
-void poolingMxN_fp32_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp32_neon_nhwc(const ITensor    *src,
+                               ITensor          *dst0,
+                               ITensor          *dst1,
+                               PoolingLayerInfo &pool_info,
+                               const Window     &window_src,
+                               const Window     &window)
 {
-    if((pool_info.pool_type == PoolingType::MAX) && pool_info.use_kernel_indices && (dst1 != nullptr))
+    if ((pool_info.pool_type == PoolingType::MAX) && pool_info.use_kernel_indices && (dst1 != nullptr))
     {
         poolingMxN_fp32_neon_nhwc_kernel_indices(src, dst0, dst1, pool_info, window);
     }
-    else if(pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && !pool_info.pad_stride_info.has_padding() && (dst1 != nullptr))
+    else if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX &&
+             !pool_info.pad_stride_info.has_padding() && (dst1 != nullptr))
     {
         pooling2_f32_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
     }
@@ -280,153 +307,174 @@
         Iterator in(src, window_src);
         Iterator out(dst0, window_out);
 
-        const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
-        const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
-        const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
-        const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
-        const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
-        const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-        int       pool_stride_x   = 0;
-        int       pool_stride_y   = 0;
+        const int pool_size_x =
+            pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+        const int pool_size_y =
+            pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+        const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
+        const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+        const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+        const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
+        int       pool_stride_x                = 0;
+        int       pool_stride_y                = 0;
         std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
         const int   upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
         const int   upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
         const float min_value     = get_initial_min<float>(pool_info.use_inf_as_limit);
         float32x4_t vres;
 
-        execute_window_loop(window_out, [&](const Coordinates & id)
-        {
-            const int idx_width    = id.y() * pool_stride_x;
-            const int idx_height   = id.z() * pool_stride_y;
-            const int pool_limit_y = pool_pad_top - idx_height;
-            const int pool_limit_x = pool_pad_left - idx_width;
-
-            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
-            const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
-            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
-            const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
-
-            int x_off = window_start_x;
-            for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+        execute_window_loop(
+            window_out,
+            [&](const Coordinates &id)
             {
-                if(pool_info.pool_type != PoolingType::MAX)
+                const int idx_width    = id.y() * pool_stride_x;
+                const int idx_height   = id.z() * pool_stride_y;
+                const int pool_limit_y = pool_pad_top - idx_height;
+                const int pool_limit_x = pool_pad_left - idx_width;
+
+                const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+                const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+                const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+                const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+                int x_off = window_start_x;
+                for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
                 {
-                    // Calculate scale
-                    const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                                   pool_stride_y);
-                    const float32x4_t scale_v = vdupq_n_f32(scale);
-
-                    // Perform pooling
-                    vres = vdupq_n_f32(0.0f);
-
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    if (pool_info.pool_type != PoolingType::MAX)
                     {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (src->info()->strides_in_bytes().z())) + x_off);
+                        // Calculate scale
+                        const float scale = calculate_avg_scale_pool2d(
+                            pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                            upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                        const float32x4_t scale_v = vdupq_n_f32(scale);
 
-                            // Get power of 2 in case of l2 pooling and accumulate
-                            if(pool_info.pool_type == PoolingType::L2)
+                        // Perform pooling
+                        vres = vdupq_n_f32(0.0f);
+
+                        for (int y = pool_start_y; y < pool_end_y; ++y)
+                        {
+                            for (int x = pool_start_x; x < pool_end_x; ++x)
                             {
-                                vres = vmlaq_f32(vres, data, data);
-                            }
-                            else
-                            {
-                                vres = vaddq_f32(vres, data);
+                                const float32x4_t data = vld1q_f32(
+                                    reinterpret_cast<const float *>(
+                                        in.ptr() +
+                                        (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                        (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                    x_off);
+
+                                // Get power of 2 in case of l2 pooling and accumulate
+                                if (pool_info.pool_type == PoolingType::L2)
+                                {
+                                    vres = vmlaq_f32(vres, data, data);
+                                }
+                                else
+                                {
+                                    vres = vaddq_f32(vres, data);
+                                }
                             }
                         }
+                        // Divide by scale
+                        vres = vmulq_f32(vres, scale_v);
                     }
-                    // Divide by scale
-                    vres = vmulq_f32(vres, scale_v);
-                }
-                else
-                {
-                    vres = vdupq_n_f32(min_value);
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    else
                     {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        vres = vdupq_n_f32(min_value);
+                        for (int y = pool_start_y; y < pool_end_y; ++y)
                         {
-                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (src->info()->strides_in_bytes().z())) + x_off);
-                            vres                   = vmaxq_f32(vres, data);
-                        }
-                    }
-                }
-
-                // Calculate square-root in case of l2 pooling
-                if(pool_info.pool_type == PoolingType::L2)
-                {
-                    float32x4_t l2_res = { static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))
-                                         };
-                    vres = l2_res;
-                }
-
-                // Store result
-                vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
-            }
-
-            // Left-overs loop
-            for(; x_off < window_end_x; ++x_off)
-            {
-                float res = 0.0f;
-
-                if(pool_info.pool_type != PoolingType::MAX)
-                {
-                    // Calculate scale
-                    const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                                   pool_stride_y);
-
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
-                    {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (src->info()->strides_in_bytes().z())) + x_off);
-
-                            // Get power of 2 in case of l2 pooling and accumulate
-                            if(pool_info.pool_type == PoolingType::L2)
+                            for (int x = pool_start_x; x < pool_end_x; ++x)
                             {
-                                res += data * data;
-                            }
-                            else
-                            {
-                                res += data;
+                                const float32x4_t data = vld1q_f32(
+                                    reinterpret_cast<const float *>(
+                                        in.ptr() +
+                                        (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                        (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                    x_off);
+                                vres = vmaxq_f32(vres, data);
                             }
                         }
                     }
 
-                    // Divide by scale
-                    res *= scale;
-                }
-                else
-                {
-                    res = min_value;
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
+                    // Calculate square-root in case of l2 pooling
+                    if (pool_info.pool_type == PoolingType::L2)
                     {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
+                        float32x4_t l2_res = {static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
+                                              static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
+                                              static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
+                                              static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))};
+                        vres               = l2_res;
+                    }
+
+                    // Store result
+                    vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+                }
+
+                // Left-overs loop
+                for (; x_off < window_end_x; ++x_off)
+                {
+                    float res = 0.0f;
+
+                    if (pool_info.pool_type != PoolingType::MAX)
+                    {
+                        // Calculate scale
+                        const float scale = calculate_avg_scale_pool2d(
+                            pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                            upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                        for (int y = pool_start_y; y < pool_end_y; ++y)
                         {
-                            const float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (src->info()->strides_in_bytes().z())) + x_off);
-                            res              = std::max(res, data);
+                            for (int x = pool_start_x; x < pool_end_x; ++x)
+                            {
+                                const float data =
+                                    *(reinterpret_cast<const float *>(
+                                          in.ptr() +
+                                          (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                          (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                      x_off);
+
+                                // Get power of 2 in case of l2 pooling and accumulate
+                                if (pool_info.pool_type == PoolingType::L2)
+                                {
+                                    res += data * data;
+                                }
+                                else
+                                {
+                                    res += data;
+                                }
+                            }
+                        }
+
+                        // Divide by scale
+                        res *= scale;
+                    }
+                    else
+                    {
+                        res = min_value;
+                        for (int y = pool_start_y; y < pool_end_y; ++y)
+                        {
+                            for (int x = pool_start_x; x < pool_end_x; ++x)
+                            {
+                                const float data =
+                                    *(reinterpret_cast<const float *>(
+                                          in.ptr() +
+                                          (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                          (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                      x_off);
+                                res = std::max(res, data);
+                            }
                         }
                     }
-                }
 
-                // Calculate square-root in case of l2 pooling
-                if(pool_info.pool_type == PoolingType::L2)
-                {
-                    res = std::sqrt(res);
-                }
+                    // Calculate square-root in case of l2 pooling
+                    if (pool_info.pool_type == PoolingType::L2)
+                    {
+                        res = std::sqrt(res);
+                    }
 
-                // Store result
-                *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
-            }
-        },
-        in, out);
+                    // Store result
+                    *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+                }
+            },
+            in, out);
     }
 }
 } // namespace cpu
diff --git a/src/cpu/kernels/pool2d/neon/list.h b/src/cpu/kernels/pool2d/neon/list.h
index eb141d6..f8f458a 100644
--- a/src/cpu/kernels/pool2d/neon/list.h
+++ b/src/cpu/kernels/pool2d/neon/list.h
@@ -26,16 +26,19 @@
 
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
+
 #include "src/core/NEON/wrapper/wrapper.h"
 #include "src/cpu/kernels/pool2d/neon/quantized.h"
+
 #include <arm_neon.h>
 
 namespace arm_compute
 {
 namespace cpu
 {
-#define DECLARE_POOLING_KERNEL(func_name) \
-    void func_name(const ITensor *src0, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &, const Window &window_src, const Window &window)
+#define DECLARE_POOLING_KERNEL(func_name)                                                                           \
+    void func_name(const ITensor *src0, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &, const Window &window_src, \
+                   const Window &window)
 
 DECLARE_POOLING_KERNEL(poolingMxN_qasymm8_neon_nhwc);
 DECLARE_POOLING_KERNEL(poolingMxN_qasymm8_signed_neon_nhwc);
@@ -65,7 +68,12 @@
 }
 
 template <typename T>
-inline uint32_t offset_no_padding(uint32_t padded_offset, const Coordinates &id, const ITensorInfo &info, int pool_stride_x, int pool_stride_y, DataLayout data_layout)
+inline uint32_t offset_no_padding(uint32_t           padded_offset,
+                                  const Coordinates &id,
+                                  const ITensorInfo &info,
+                                  int                pool_stride_x,
+                                  int                pool_stride_y,
+                                  DataLayout         data_layout)
 {
     const int pad_left    = info.padding().left;
     const int pad_right   = info.padding().right;
@@ -76,22 +84,24 @@
     const int pad_horiz   = pad_left + pad_right;
     const int pad_vert    = pad_top + pad_bottom;
 
-    if(data_layout == DataLayout::NCHW)
+    if (data_layout == DataLayout::NCHW)
     {
-        const uint32_t offset_base = padded_offset
-                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_y                                            /* subtract padding elems per row */
-                                     - pad_top * sizeof(T)                                                                       /* top padding */
-                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() - pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
-                                     - in_stride_w * id[3];
+        const uint32_t offset_base =
+            padded_offset - sizeof(T) * pad_horiz * id.y() * pool_stride_y /* subtract padding elems per row */
+            - pad_top * sizeof(T)                                          /* top padding */
+            - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() -
+            pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
+            - in_stride_w * id[3];
 
         return offset_base;
     }
     else
     {
-        const uint32_t offset_base = padded_offset
-                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_x                          // subtract padding elems per row
-                                     - pad_top * sizeof(T)                                                     // top padding
-                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() * pool_stride_y // for each Z plane there are width*pad_right padding elems
+        const uint32_t offset_base = padded_offset -
+                                     sizeof(T) * pad_horiz * id.y() * pool_stride_x // subtract padding elems per row
+                                     - pad_top * sizeof(T)                          // top padding
+                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() *
+                                           pool_stride_y // for each Z plane there are width*pad_right padding elems
                                      - in_stride_w * id[3];
 
         return offset_base;
@@ -100,4 +110,4 @@
 } // namespace cpu
 } // namespace arm_compute
 
-#endif // SRC_CORE_NEON_KERNELS_POOLING_LIST_H
\ No newline at end of file
+#endif // SRC_CORE_NEON_KERNELS_POOLING_LIST_H
diff --git a/src/cpu/kernels/pool2d/neon/nchw/all.cpp b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
index c342b96..ee4a67b 100644
--- a/src/cpu/kernels/pool2d/neon/nchw/all.cpp
+++ b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
@@ -25,9 +25,11 @@
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
 #include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
 #include "src/cpu/kernels/pool2d/neon/list.h"
+
 #include <limits>
 
 #ifdef ENABLE_NCHW_KERNELS
@@ -38,15 +40,19 @@
 #define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
     (x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
 #define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
-    (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
-#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
-    ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) ? vdup_n_f32(fval) : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+    (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1)              \
+                        : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)                   \
+    ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) \
+        ? vdup_n_f32(fval)                                                                         \
+        : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
 
 #define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)           \
     vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
                  READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))
 
-float32x4x2_t read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
+float32x4x2_t
+read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
 {
     float32x4x2_t vec;
     vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
@@ -56,13 +62,14 @@
 
 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
 
-float16x4_t read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
+float16x4_t
+read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
 {
     float16_t  vec[4];
     const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
-    for(int i = 0; i < 4; i++)
+    for (int i = 0; i < 4; i++)
     {
-        if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+        if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
         {
             vec[i] = *(ptr + i);
         }
@@ -74,94 +81,106 @@
     return wrapper::vload(vec);
 }
 
-void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling3_fp16_neon_nchw(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
 
     Iterator in(src, window_src);
     Iterator out(dst0, window);
 
-    constexpr const int pool_size       = 3;
-    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int                  src_w          = src->info()->dimension(0);
-    const int                  src_h          = src->info()->dimension(1);
-    const int                  upper_bound_w  = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int                  upper_bound_h  = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const float16_t            fp16_min       = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
-    const float16_t            fill_value     = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
-    const unsigned char *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+    constexpr const int pool_size            = 3;
+    const int           pool_pad_right       = pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top         = pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left        = pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom      = pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x        = 0;
+    int                 pool_stride_y        = 0;
+    std::tie(pool_stride_x, pool_stride_y)   = pool_info.pad_stride_info.stride();
+    const int                  src_w         = src->info()->dimension(0);
+    const int                  src_h         = src->info()->dimension(1);
+    const int                  upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int                  upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const float16_t            fp16_min      = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+    const float16_t            fill_value    = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
+    const unsigned char *const src_top_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const unsigned char *const src_middle_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const unsigned char *const src_bottom_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto  x_val    = id.x() * pool_stride_x;
-        const auto  y_val_0  = id.y() * pool_stride_y;
-        const auto  y_val_1  = (id.y() * pool_stride_y) + 1;
-        const auto  y_val_2  = (id.y() * pool_stride_y) + 2;
-        float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                          x_val, y_val_0, reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
-        float16x4_t middle_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                             x_val, y_val_1, reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
-        float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                             x_val, y_val_2, reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
-        float16x4_t res = {};
-
-        // Get power of 2 in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            top_data    = vmul_f16(top_data, top_data);
-            middle_data = vmul_f16(middle_data, middle_data);
-            bottom_data = vmul_f16(bottom_data, bottom_data);
-        }
+            const auto  x_val   = id.x() * pool_stride_x;
+            const auto  y_val_0 = id.y() * pool_stride_y;
+            const auto  y_val_1 = (id.y() * pool_stride_y) + 1;
+            const auto  y_val_2 = (id.y() * pool_stride_y) + 2;
+            float16x4_t top_data =
+                read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+                                           reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
+            float16x4_t middle_data = read_4_boundary_aware_fp16(
+                src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+                reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
+            float16x4_t bottom_data = read_4_boundary_aware_fp16(
+                src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_2,
+                reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
+            float16x4_t res = {};
 
-        if(pool_info.pool_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                           pool_stride_y);
-            const float16x4_t scale_v = vdup_n_f16(scale);
-            // Perform pooling
-            const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
-            res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
-            res                        = vmul_f16(vpadd_f16(res, res), scale_v);
-        }
-        else
-        {
-            const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
-            res                        = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
-            res                        = vpmax_f16(res, res);
-        }
+            // Get power of 2 in case of l2 pooling
+            if (pool_info.pool_type == PoolingType::L2)
+            {
+                top_data    = vmul_f16(top_data, top_data);
+                middle_data = vmul_f16(middle_data, middle_data);
+                bottom_data = vmul_f16(bottom_data, bottom_data);
+            }
 
-        // Calculate square-root in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            res = vsqrt_f16(res);
-        }
+            if (pool_info.pool_type != PoolingType::MAX)
+            {
+                // Calculate scale
+                const float scale = calculate_avg_scale_pool2d(
+                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h,
+                    pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                const float16x4_t scale_v = vdup_n_f16(scale);
+                // Perform pooling
+                const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
+                res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
+                res                        = vmul_f16(vpadd_f16(res, res), scale_v);
+            }
+            else
+            {
+                const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
+                res                        = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
+                res                        = vpmax_f16(res, res);
+            }
 
-        *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
-    },
-    in, out);
+            // Calculate square-root in case of l2 pooling
+            if (pool_info.pool_type == PoolingType::L2)
+            {
+                res = vsqrt_f16(res);
+            }
+
+            *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+        },
+        in, out);
 }
 
 template <typename T>
-inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
-f16_to_f32(float16x4_t in)
+inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type f16_to_f32(float16x4_t in)
 {
-    float32x2_t out = { static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1)) };
+    float32x2_t out = {static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1))};
     return out;
 }
 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
 
 template <typename T>
-inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
-f16_to_f32(float32x2_t in)
+inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type f16_to_f32(float32x2_t in)
 {
     return in;
 }
@@ -171,9 +190,9 @@
 {
     T          vec[2];
     const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
-    for(int i = 0; i < 2; i++)
+    for (int i = 0; i < 2; i++)
     {
-        if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+        if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
         {
             vec[i] = *(ptr + i);
         }
@@ -186,61 +205,80 @@
 }
 
 template <typename T>
-void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_nchw_maxpool_indices(const ITensor    *src,
+                                   ITensor          *dst0,
+                                   ITensor          *dst1,
+                                   PoolingLayerInfo &pool_info,
+                                   const Window     &window_src,
+                                   const Window     &window)
 {
     Iterator  in(src, window_src);
     Iterator  out(dst0, window);
     Iterator  indices(dst1, window);
-    const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left = pool_info.pad_stride_info.pad_left();
-    int       pool_stride_x = 0;
-    int       pool_stride_y = 0;
+    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+    int       pool_stride_x                = 0;
+    int       pool_stride_y                = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int            src_w          = src->info()->dimension(0);
-    const int            src_h          = src->info()->dimension(1);
-    const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const int            pad_left       = src->info()->padding().left;
-    const int            pad_right      = src->info()->padding().right;
-    const int            in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());
-    const T              float_min      = get_initial_min<T>(pool_info.use_inf_as_limit);
-    const T              fill_value     = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
+    const int            src_w             = src->info()->dimension(0);
+    const int            src_h             = src->info()->dimension(1);
+    const uint8_t *const src_top_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const uint8_t *const src_bottom_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const int pad_left    = src->info()->padding().left;
+    const int pad_right   = src->info()->padding().right;
+    const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
+    const T   float_min   = get_initial_min<T>(pool_info.use_inf_as_limit);
+    const T   fill_value  = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto x_val    = id.x() * pool_stride_x;
-        const auto y_val_0  = id.y() * pool_stride_y;
-        const auto y_val_1  = (id.y() * pool_stride_y) + 1;
-        auto       top_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                    x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
-        auto bottom_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                 x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
-        float32x2_t top_data_f32    = f16_to_f32<T>(top_data);
-        float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
+        {
+            const auto x_val    = id.x() * pool_stride_x;
+            const auto y_val_0  = id.y() * pool_stride_y;
+            const auto y_val_1  = (id.y() * pool_stride_y) + 1;
+            auto       top_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+                                                        reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+            auto       bottom_data =
+                read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+                                      reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+            float32x2_t top_data_f32    = f16_to_f32<T>(top_data);
+            float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
 
-        // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
-        const float32x2_t max_data_top      = vpmax_f32(top_data_f32, top_data_f32);
-        const float32x2_t max_data_bottom   = vpmax_f32(bottom_data_f32, bottom_data_f32);
-        const float32x2_t max_data          = vmax_f32(max_data_top, max_data_bottom);
-        *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
+            // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
+            const float32x2_t max_data_top      = vpmax_f32(top_data_f32, top_data_f32);
+            const float32x2_t max_data_bottom   = vpmax_f32(bottom_data_f32, bottom_data_f32);
+            const float32x2_t max_data          = vmax_f32(max_data_top, max_data_bottom);
+            *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
 
-        // Calculate max data indice, which will be used in max unpool.
-        const uint32_t   offset_base              = offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
-        const uint32_t   offset_top               = (uint32_t)(offset_base / sizeof(T));
-        const uint32_t   offset_bottom            = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
-        const uint32x2_t voffset_top              = { offset_top, offset_top + 1u };
-        const uint32x2_t voffset_bottom           = { offset_bottom, offset_bottom + 1u };
-        const uint32x2_t tmp_indices_top          = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
-        const uint32x2_t tmp_indices_bottom       = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
-        *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
-    },
-    in, out, indices);
+            // Calculate max data indice, which will be used in max unpool.
+            const uint32_t offset_base =
+                offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
+            const uint32_t   offset_top     = (uint32_t)(offset_base / sizeof(T));
+            const uint32_t   offset_bottom  = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
+            const uint32x2_t voffset_top    = {offset_top, offset_top + 1u};
+            const uint32x2_t voffset_bottom = {offset_bottom, offset_bottom + 1u};
+            const uint32x2_t tmp_indices_top =
+                vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
+            const uint32x2_t tmp_indices_bottom       = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)),
+                                                                 voffset_bottom, vrev64_u32(voffset_bottom));
+            *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(
+                vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
+        },
+        in, out, indices);
 }
 
 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_fp16_neon_nchw(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
 {
-    if(pool_info.pool_type == PoolingType::MAX && dst1)
+    if (pool_info.pool_type == PoolingType::MAX && dst1)
     {
         pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
     }
@@ -254,244 +292,274 @@
         const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
         const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
         int           pool_stride_x, pool_stride_y = 0;
-        std::tie(pool_stride_x, pool_stride_y)     = pool_info.pad_stride_info.stride();
-        const int       src_w         = src->info()->dimension(0);
-        const int       src_h         = src->info()->dimension(1);
-        const int       upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-        const int       upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-        const float16_t fp16_min      = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
-        const float16_t fill_value    = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+        std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+        const int       src_w                  = src->info()->dimension(0);
+        const int       src_h                  = src->info()->dimension(1);
+        const int       upper_bound_w          = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+        const int       upper_bound_h          = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+        const float16_t fp16_min               = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+        const float16_t fill_value             = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
 
-        const unsigned char *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-        const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+        const unsigned char *const src_top_ptr =
+            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+        const unsigned char *const src_bottom_ptr =
+            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
 
-        execute_window_loop(window, [&](const Coordinates & id)
-        {
-            const auto in_top_ptr    = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
-            const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
-
-            const auto  x_val    = id.x() * pool_stride_x;
-            const auto  y_val_0  = id.y() * pool_stride_y;
-            const auto  y_val_1  = (id.y() * pool_stride_y) + 1;
-            float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                              x_val, y_val_0, in_top_ptr, fill_value);
-            float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
-                                                                 x_val, y_val_1, in_bottom_ptr, fill_value);
-            float16x4_t res = {};
-
-            // Get power of 2 in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
+        execute_window_loop(
+            window,
+            [&](const Coordinates &id)
             {
-                top_data    = vmul_f16(top_data, top_data);
-                bottom_data = vmul_f16(bottom_data, bottom_data);
-            }
+                const auto in_top_ptr    = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
+                const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
 
-            if(pool_info.pool_type != PoolingType::MAX)
-            {
-                const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                               pool_stride_y);
-                const float16x4_t scale_v = vdup_n_f16(scale);
+                const auto  x_val       = id.x() * pool_stride_x;
+                const auto  y_val_0     = id.y() * pool_stride_y;
+                const auto  y_val_1     = (id.y() * pool_stride_y) + 1;
+                float16x4_t top_data    = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+                                                                     y_val_0, in_top_ptr, fill_value);
+                float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+                                                                     y_val_1, in_bottom_ptr, fill_value);
+                float16x4_t res         = {};
 
-                const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
-                res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
-            }
-            else
-            {
-                const float16x4_t max_data = vmax_f16(top_data, bottom_data);
-                res                        = vpmax_f16(max_data, max_data);
-            }
+                // Get power of 2 in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
+                {
+                    top_data    = vmul_f16(top_data, top_data);
+                    bottom_data = vmul_f16(bottom_data, bottom_data);
+                }
 
-            // Calculate square-root in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
-            {
-                res = vsqrt_f16(res);
-            }
+                if (pool_info.pool_type != PoolingType::MAX)
+                {
+                    const float scale = calculate_avg_scale_pool2d(
+                        pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w,
+                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+                    const float16x4_t scale_v = vdup_n_f16(scale);
 
-            // Store result
-            *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
-        },
-        in, out);
+                    const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
+                    res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
+                }
+                else
+                {
+                    const float16x4_t max_data = vmax_f16(top_data, bottom_data);
+                    res                        = vpmax_f16(max_data, max_data);
+                }
+
+                // Calculate square-root in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
+                {
+                    res = vsqrt_f16(res);
+                }
+
+                // Store result
+                *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+            },
+            in, out);
     }
 }
 
-void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp16_neon_nchw(const ITensor    *src,
+                               ITensor          *dst0,
+                               ITensor          *dst1,
+                               PoolingLayerInfo &pool_info,
+                               const Window     &window_src,
+                               const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
     Iterator out(dst0, window);
 
-    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
-    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
-    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
+    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x                = 0;
+    int       pool_stride_y                = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int       src_w         = src->info()->dimension(0);
-    const int       src_h         = src->info()->dimension(1);
-    const int       upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int       upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const float16_t fp16_min      = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
-    const float16_t fill_value    = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+    const int       src_w                  = src->info()->dimension(0);
+    const int       src_h                  = src->info()->dimension(1);
+    const int       upper_bound_w          = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int       upper_bound_h          = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const float16_t fp16_min               = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+    const float16_t fill_value             = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float16_t res = 0.0f;
-
-        if(pool_info.pool_type != PoolingType::MAX)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            // Calculate scale
-            const float16_t scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                               pool_stride_y);
+            float16_t res = 0.0f;
 
-            // Perform pooling
-            for(int y = 0; y < pool_size_y; ++y)
+            if (pool_info.pool_type != PoolingType::MAX)
             {
-                for(int x = 0; x < pool_size_x; ++x)
+                // Calculate scale
+                const float16_t scale = calculate_avg_scale_pool2d(
+                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+                    upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                // Perform pooling
+                for (int y = 0; y < pool_size_y; ++y)
                 {
-                    const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
-                                                                         + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
-
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
-
-                    if(pool_info.pool_type == PoolingType::L2)
+                    for (int x = 0; x < pool_size_x; ++x)
                     {
-                        data *= data;
+                        const auto ptr = reinterpret_cast<const float16_t *>(
+                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+
+                        if (pool_info.pool_type == PoolingType::L2)
+                        {
+                            data *= data;
+                        }
+
+                        res += data;
                     }
-
-                    res += data;
                 }
+
+                // Divide by scale
+                res *= scale;
             }
-
-            // Divide by scale
-            res *= scale;
-        }
-        else // if max pooling
-        {
-            res = fp16_min;
-
-            for(int y = 0; y < pool_size_y; ++y)
+            else // if max pooling
             {
-                for(int x = 0; x < pool_size_x; ++x)
-                {
-                    const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
-                                                                         + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+                res = fp16_min;
 
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
-                    res            = std::max(res, data);
+                for (int y = 0; y < pool_size_y; ++y)
+                {
+                    for (int x = 0; x < pool_size_x; ++x)
+                    {
+                        const auto ptr = reinterpret_cast<const float16_t *>(
+                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+                        res            = std::max(res, data);
+                    }
                 }
             }
-        }
 
-        // Calculate square-root in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            res = std::sqrt(res);
-        }
+            // Calculate square-root in case of l2 pooling
+            if (pool_info.pool_type == PoolingType::L2)
+            {
+                res = std::sqrt(res);
+            }
 
-        // Store result
-        *(reinterpret_cast<float16_t *>(out.ptr())) = res;
-    },
-    in, out);
+            // Store result
+            *(reinterpret_cast<float16_t *>(out.ptr())) = res;
+        },
+        in, out);
 }
 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
 
-void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp32_neon_nchw(const ITensor    *src,
+                               ITensor          *dst0,
+                               ITensor          *dst1,
+                               PoolingLayerInfo &pool_info,
+                               const Window     &window_src,
+                               const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
     Iterator out(dst0, window);
 
-    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
-    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
-    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
+    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x                = 0;
+    int       pool_stride_y                = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int   src_w         = src->info()->dimension(0);
-    const int   src_h         = src->info()->dimension(1);
-    const int   upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int   upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const float min_value     = get_initial_min<float>(pool_info.use_inf_as_limit);
-    const float fill_value    = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+    const int   src_w                      = src->info()->dimension(0);
+    const int   src_h                      = src->info()->dimension(1);
+    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
+    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float res = 0.0f;
-
-        if(pool_info.pool_type != PoolingType::MAX)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            // Calculate scale
-            const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h,
-                                                           pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+            float res = 0.0f;
 
-            // Perform pooling
-            for(int y = 0; y < pool_size_y; ++y)
+            if (pool_info.pool_type != PoolingType::MAX)
             {
-                for(int x = 0; x < pool_size_x; ++x)
+                // Calculate scale
+                const float scale = calculate_avg_scale_pool2d(
+                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+                    upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                // Perform pooling
+                for (int y = 0; y < pool_size_y; ++y)
                 {
-                    const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
-                                                                     + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
-
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
-
-                    if(pool_info.pool_type == PoolingType::L2)
+                    for (int x = 0; x < pool_size_x; ++x)
                     {
-                        data *= data;
+                        const auto ptr = reinterpret_cast<const float *>(
+                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+
+                        if (pool_info.pool_type == PoolingType::L2)
+                        {
+                            data *= data;
+                        }
+
+                        res += data;
                     }
-
-                    res += data;
                 }
+
+                // Divide by scale
+                res *= scale;
             }
-
-            // Divide by scale
-            res *= scale;
-        }
-        else // if max pooling
-        {
-            res = min_value;
-
-            for(int y = 0; y < pool_size_y; ++y)
+            else // if max pooling
             {
-                for(int x = 0; x < pool_size_x; ++x)
-                {
-                    const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
-                                                                     + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+                res = min_value;
 
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
-                    res            = std::max(res, data);
+                for (int y = 0; y < pool_size_y; ++y)
+                {
+                    for (int x = 0; x < pool_size_x; ++x)
+                    {
+                        const auto ptr = reinterpret_cast<const float *>(
+                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        float     data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+                        res            = std::max(res, data);
+                    }
                 }
             }
-        }
 
-        // Calculate square-root in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            res = std::sqrt(res);
-        }
+            // Calculate square-root in case of l2 pooling
+            if (pool_info.pool_type == PoolingType::L2)
+            {
+                res = std::sqrt(res);
+            }
 
-        // Store result
-        *(reinterpret_cast<float *>(out.ptr())) = res;
-    },
-    in, out);
+            // Store result
+            *(reinterpret_cast<float *>(out.ptr())) = res;
+        },
+        in, out);
 }
 
-void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_fp32_neon_nchw(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
 {
-    if(pool_info.pool_type == PoolingType::MAX && dst1)
+    if (pool_info.pool_type == PoolingType::MAX && dst1)
     {
         pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
     }
@@ -499,64 +567,168 @@
     {
         Iterator      in(src, window_src);
         Iterator      out(dst0, window);
-        constexpr int pool_size       = 2;
-        const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
-        const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
-        const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
-        const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-        int           pool_stride_x   = 0;
-        int           pool_stride_y   = 0;
+        constexpr int pool_size                = 2;
+        const int     pool_pad_right           = pool_info.pad_stride_info.pad_right();
+        const int     pool_pad_top             = pool_info.pad_stride_info.pad_top();
+        const int     pool_pad_left            = pool_info.pad_stride_info.pad_left();
+        const int     pool_pad_bottom          = pool_info.pad_stride_info.pad_bottom();
+        int           pool_stride_x            = 0;
+        int           pool_stride_y            = 0;
         std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-        const int   src_w         = src->info()->dimension(0);
-        const int   src_h         = src->info()->dimension(1);
-        const int   upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-        const int   upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-        const float min_value     = get_initial_min<float>(pool_info.use_inf_as_limit);
-        const float fill_value    = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+        const int   src_w                      = src->info()->dimension(0);
+        const int   src_h                      = src->info()->dimension(1);
+        const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+        const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+        const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
+        const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
 
-        const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-        const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+        const uint8_t *const src_top_ptr =
+            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+        const uint8_t *const src_bottom_ptr =
+            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
 
-        execute_window_loop(window, [&](const Coordinates & id)
+        execute_window_loop(
+            window,
+            [&](const Coordinates &id)
+            {
+                const auto in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+                const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+                const auto x_val      = id.x() * pool_stride_x;
+                const auto y_val_0    = id.y() * pool_stride_y;
+                const auto y_val_1    = (id.y() * pool_stride_y) + 1;
+                auto       top_data   = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0,
+                                                              in_top_ptr, fill_value);
+                auto bottom_data      = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+                                                              in_bottom_ptr, fill_value);
+                float32x2_t res       = {};
+                float       final_res = 0;
+
+                // Get power of 2 in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
+                {
+                    top_data    = vmul_f32(top_data, top_data);
+                    bottom_data = vmul_f32(bottom_data, bottom_data);
+                }
+
+                if (pool_info.pool_type != PoolingType::MAX)
+                {
+                    // Calculate scale
+                    float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+                                                             pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+                                                             pool_pad_top, pool_stride_x, pool_stride_y);
+                    const float32x2_t scale_v = vdup_n_f32(scale);
+
+                    // Perform pooling
+                    const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
+                    res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+                }
+                else
+                {
+                    const float32x2_t max_data = vmax_f32(top_data, bottom_data);
+                    res                        = vpmax_f32(max_data, max_data);
+                }
+                final_res = vget_lane_f32(res, 0);
+
+                // Calculate square-root in case of l2 pooling
+                if (pool_info.pool_type == PoolingType::L2)
+                {
+                    final_res = sqrt(final_res);
+                }
+
+                // Store result
+                *(reinterpret_cast<float *>(out.ptr())) = final_res;
+            },
+            in, out);
+    }
+}
+
+void pooling3_fp32_neon_nchw(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
+{
+    ARM_COMPUTE_UNUSED(dst1);
+    Iterator in(src, window_src);
+    Iterator out(dst0, window);
+
+    constexpr const int pool_size          = 3;
+    const int           pool_pad_right     = pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top       = pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left      = pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom    = pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x      = 0;
+    int                 pool_stride_y      = 0;
+    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+    const int   src_w                      = src->info()->dimension(0);
+    const int   src_h                      = src->info()->dimension(1);
+    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
+    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+    const uint8_t *const src_top_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+    const uint8_t *const src_middle_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+    const uint8_t *const src_bottom_ptr =
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
             const auto in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+            const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
             const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
 
-            const auto  x_val       = id.x() * pool_stride_x;
-            const auto  y_val_0     = id.y() * pool_stride_y;
-            const auto  y_val_1     = (id.y() * pool_stride_y) + 1;
-            auto        top_data    = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
-            auto        bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_bottom_ptr, fill_value);
-            float32x2_t res         = {};
-            float       final_res   = 0;
+            const auto x_val   = id.x() * pool_stride_x;
+            const auto y_val_0 = id.y() * pool_stride_y;
+            const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+            const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+            auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr,
+                                                  fill_value);
+            auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+                                                     in_middle_ptr, fill_value);
+            auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2,
+                                                     in_bottom_ptr, fill_value);
+
+            float32x2_t res       = {};
+            float       final_res = 0;
 
             // Get power of 2 in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
+            if (pool_info.pool_type == PoolingType::L2)
             {
-                top_data    = vmul_f32(top_data, top_data);
-                bottom_data = vmul_f32(bottom_data, bottom_data);
+                top_data    = vmulq_f32(top_data, top_data);
+                middle_data = vmulq_f32(middle_data, middle_data);
+                bottom_data = vmulq_f32(bottom_data, bottom_data);
             }
 
-            if(pool_info.pool_type != PoolingType::MAX)
+            if (pool_info.pool_type != PoolingType::MAX)
             {
                 // Calculate scale
-                float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                         pool_stride_y);
+                float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+                                                         pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+                                                         pool_pad_top, pool_stride_x, pool_stride_y);
                 const float32x2_t scale_v = vdup_n_f32(scale);
 
                 // Perform pooling
-                const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
-                res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+                const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
+                res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
+                res = vmul_f32(vpadd_f32(res, res), scale_v);
             }
             else
             {
-                const float32x2_t max_data = vmax_f32(top_data, bottom_data);
-                res                        = vpmax_f32(max_data, max_data);
+                const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
+                res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
+                res = vpmax_f32(res, res);
             }
             final_res = vget_lane_f32(res, 0);
 
             // Calculate square-root in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
+            if (pool_info.pool_type == PoolingType::L2)
             {
                 final_res = sqrt(final_res);
             }
@@ -565,191 +737,120 @@
             *(reinterpret_cast<float *>(out.ptr())) = final_res;
         },
         in, out);
-    }
 }
 
-void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling7_fp32_neon_nchw(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
     Iterator out(dst0, window);
 
-    constexpr const int pool_size       = 3;
-    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
+    constexpr const int pool_size          = 7;
+    const int           pool_pad_right     = pool_info.pad_stride_info.pad_right();
+    const int           pool_pad_top       = pool_info.pad_stride_info.pad_top();
+    const int           pool_pad_left      = pool_info.pad_stride_info.pad_left();
+    const int           pool_pad_bottom    = pool_info.pad_stride_info.pad_bottom();
+    int                 pool_stride_x      = 0;
+    int                 pool_stride_y      = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int   src_w         = src->info()->dimension(0);
-    const int   src_h         = src->info()->dimension(1);
-    const int   upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int   upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const float min_value     = get_initial_min<float>(pool_info.use_inf_as_limit);
-    const float fill_value    = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+    const int   src_w                      = src->info()->dimension(0);
+    const int   src_h                      = src->info()->dimension(1);
+    const int   upper_bound_w              = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int   upper_bound_h              = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const float min_value                  = get_initial_min<float>(pool_info.use_inf_as_limit);
+    const float fill_value                 = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
 
-    const uint8_t *const src_top_ptr    = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
-    execute_window_loop(window, [&](const Coordinates & id)
+    std::array<const uint8_t *, pool_size> src_ptrs{{}};
+    for (int i = 0; i < pool_size; ++i)
     {
-        const auto in_top_ptr    = reinterpret_cast<const float *>(src_top_ptr + in.offset());
-        const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
-        const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
-
-        const auto x_val       = id.x() * pool_stride_x;
-        const auto y_val_0     = id.y() * pool_stride_y;
-        const auto y_val_1     = (id.y() * pool_stride_y) + 1;
-        const auto y_val_2     = (id.y() * pool_stride_y) + 2;
-        auto       top_data    = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
-        auto       middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_middle_ptr, fill_value);
-        auto       bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2, in_bottom_ptr, fill_value);
-
-        float32x2_t res       = {};
-        float       final_res = 0;
-
-        // Get power of 2 in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            top_data    = vmulq_f32(top_data, top_data);
-            middle_data = vmulq_f32(middle_data, middle_data);
-            bottom_data = vmulq_f32(bottom_data, bottom_data);
-        }
-
-        if(pool_info.pool_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                     pool_stride_y);
-            const float32x2_t scale_v = vdup_n_f32(scale);
-
-            // Perform pooling
-            const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
-            res                        = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
-            res                        = vmul_f32(vpadd_f32(res, res), scale_v);
-        }
-        else
-        {
-            const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
-            res                        = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
-            res                        = vpmax_f32(res, res);
-        }
-        final_res = vget_lane_f32(res, 0);
-
-        // Calculate square-root in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            final_res = sqrt(final_res);
-        }
-
-        // Store result
-        *(reinterpret_cast<float *>(out.ptr())) = final_res;
-    },
-    in, out);
-}
-
-void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
-{
-    ARM_COMPUTE_UNUSED(dst1);
-    Iterator in(src, window_src);
-    Iterator out(dst0, window);
-
-    constexpr const int pool_size       = 7;
-    const int           pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int   src_w         = src->info()->dimension(0);
-    const int   src_h         = src->info()->dimension(1);
-    const int   upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int   upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const float min_value     = get_initial_min<float>(pool_info.use_inf_as_limit);
-    const float fill_value    = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
-
-    std::array<const uint8_t *, pool_size> src_ptrs{ {} };
-    for(int i = 0; i < pool_size; ++i)
-    {
-        src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
+        src_ptrs[i] =
+            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
     }
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
-
-        auto          x_val = id.x() * pool_stride_x;
-        auto          y_val = id.y() * pool_stride_y;
-        float32x4x2_t data  = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
-
-        float32x2_t res       = {};
-        float       final_res = 0.f;
-
-        if(pool_info.pool_type != PoolingType::MAX)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            // Calculate scale
-            float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                     pool_stride_y);
-            const float32x2_t scale_v = vdup_n_f32(scale);
+            auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
 
-            // Get power of 2 in case of l2 pooling
-            if(pool_info.pool_type == PoolingType::L2)
-            {
-                data.val[0] = vmulq_f32(data.val[0], data.val[0]);
-                data.val[1] = vmulq_f32(data.val[1], data.val[1]);
-            }
-            float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
-            for(int i = 1; i < pool_size; ++i)
-            {
-                in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+            auto          x_val = id.x() * pool_stride_x;
+            auto          y_val = id.y() * pool_stride_y;
+            float32x4x2_t data =
+                read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
 
-                x_val = id.x() * pool_stride_x;
-                y_val = (id.y() * pool_stride_y) + i;
-                data  = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
+            float32x2_t res       = {};
+            float       final_res = 0.f;
+
+            if (pool_info.pool_type != PoolingType::MAX)
+            {
+                // Calculate scale
+                float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+                                                         pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+                                                         pool_pad_top, pool_stride_x, pool_stride_y);
+                const float32x2_t scale_v = vdup_n_f32(scale);
+
                 // Get power of 2 in case of l2 pooling
-                if(pool_info.pool_type == PoolingType::L2)
+                if (pool_info.pool_type == PoolingType::L2)
                 {
                     data.val[0] = vmulq_f32(data.val[0], data.val[0]);
                     data.val[1] = vmulq_f32(data.val[1], data.val[1]);
                 }
-                sum_data = vaddq_f32(sum_data, data.val[0]);
-                sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+                float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
+                for (int i = 1; i < pool_size; ++i)
+                {
+                    in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+                    x_val = id.x() * pool_stride_x;
+                    y_val = (id.y() * pool_stride_y) + i;
+                    data  = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr,
+                                                  fill_value);
+                    // Get power of 2 in case of l2 pooling
+                    if (pool_info.pool_type == PoolingType::L2)
+                    {
+                        data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+                        data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+                    }
+                    sum_data = vaddq_f32(sum_data, data.val[0]);
+                    sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+                }
+                res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
+                res = vmul_f32(vpadd_f32(res, res), scale_v);
             }
-            res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
-            res = vmul_f32(vpadd_f32(res, res), scale_v);
-        }
-        else
-        {
-            for(int i = 1; i < pool_size; ++i)
+            else
             {
-                in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+                for (int i = 1; i < pool_size; ++i)
+                {
+                    in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
 
-                x_val              = id.x() * pool_stride_x;
-                y_val              = (id.y() * pool_stride_y) + i;
-                float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
-                data               = vmax2q_f32(data, temp);
+                    x_val              = id.x() * pool_stride_x;
+                    y_val              = (id.y() * pool_stride_y) + i;
+                    float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val,
+                                                               in_ptr, fill_value);
+                    data               = vmax2q_f32(data, temp);
+                }
+                res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
+                res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
+                res = vpmax_f32(res, res);
             }
-            res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
-            res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
-            res = vpmax_f32(res, res);
-        }
-        final_res = vget_lane_f32(res, 0);
+            final_res = vget_lane_f32(res, 0);
 
-        // Calculate square-root in case of l2 pooling
-        if(pool_info.pool_type == PoolingType::L2)
-        {
-            final_res = sqrt(final_res);
-        }
+            // Calculate square-root in case of l2 pooling
+            if (pool_info.pool_type == PoolingType::L2)
+            {
+                final_res = sqrt(final_res);
+            }
 
-        // Store result
-        *(reinterpret_cast<float *>(out.ptr())) = final_res;
-    },
-    in, out);
+            // Store result
+            *(reinterpret_cast<float *>(out.ptr())) = final_res;
+        },
+        in, out);
 }
 } // namespace cpu
 } // namespace arm_compute
 
-#endif // ENABLE_NCHW_KERNELS
\ No newline at end of file
+#endif // ENABLE_NCHW_KERNELS
diff --git a/src/cpu/kernels/pool2d/neon/qasymm8.cpp b/src/cpu/kernels/pool2d/neon/qasymm8.cpp
index 7f8841e..44675b5 100644
--- a/src/cpu/kernels/pool2d/neon/qasymm8.cpp
+++ b/src/cpu/kernels/pool2d/neon/qasymm8.cpp
@@ -25,17 +25,23 @@
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
 #include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
 #include "src/cpu/kernels/pool2d/neon/list.h"
 
 namespace arm_compute
 {
 namespace cpu
 {
-void poolingMxN_qasymm8_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_qasymm8_neon_nhwc(const ITensor    *src,
+                                  ITensor          *dst0,
+                                  ITensor          *dst1,
+                                  PoolingLayerInfo &pool_info,
+                                  const Window     &window_src,
+                                  const Window     &window)
 {
     poolingMxN_q8_neon_nhwc<uint8_t>(src, dst0, dst1, pool_info, window_src, window);
 }
 } // namespace cpu
-} // namespace arm_compute
\ No newline at end of file
+} // namespace arm_compute
diff --git a/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp b/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp
index 8643651..d434323 100644
--- a/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp
+++ b/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp
@@ -25,17 +25,23 @@
 #include "arm_compute/core/ITensor.h"
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
 #include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
 #include "src/cpu/kernels/pool2d/neon/list.h"
 
 namespace arm_compute
 {
 namespace cpu
 {
-void poolingMxN_qasymm8_signed_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_qasymm8_signed_neon_nhwc(const ITensor    *src,
+                                         ITensor          *dst0,
+                                         ITensor          *dst1,
+                                         PoolingLayerInfo &pool_info,
+                                         const Window     &window_src,
+                                         const Window     &window)
 {
     poolingMxN_q8_neon_nhwc<int8_t>(src, dst0, dst1, pool_info, window_src, window);
 }
 } // namespace cpu
-} // namespace arm_compute
\ No newline at end of file
+} // namespace arm_compute
diff --git a/src/cpu/kernels/pool2d/neon/quantized.h b/src/cpu/kernels/pool2d/neon/quantized.h
index a2cd399..38f1b2f 100644
--- a/src/cpu/kernels/pool2d/neon/quantized.h
+++ b/src/cpu/kernels/pool2d/neon/quantized.h
@@ -26,11 +26,13 @@
 
 #include "arm_compute/core/Types.h"
 #include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/PoolingHelpers.h"
 #include "src/core/NEON/NEAsymm.h"
 #include "src/core/NEON/NEFixedPoint.h"
 #include "src/core/NEON/NEMath.h"
 #include "src/core/NEON/wrapper/wrapper.h"
-#include "src/core/helpers/PoolingHelpers.h"
+
 #include <arm_neon.h>
 
 namespace arm_compute
@@ -38,7 +40,12 @@
 namespace cpu
 {
 template <typename T>
-void poolingMxN_q8_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_q8_neon_nhwc(const ITensor    *src,
+                             ITensor          *dst0,
+                             ITensor          *dst1,
+                             PoolingLayerInfo &pool_info,
+                             const Window     &window_src,
+                             const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
 
@@ -60,15 +67,15 @@
     using q32_t   = typename wrapper::traits::promote_t<q16_t>;
     using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
 
-    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
-    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
     const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
     const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
     const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
     const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
 
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
+    int pool_stride_x                      = 0;
+    int pool_stride_y                      = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
     const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
     const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
@@ -80,233 +87,267 @@
     const float quant_rescale = dst_qinfo.scale / src_qinfo.scale;
     // "new_offset" doesn't have to consider the "half_scale_v" in its computation
     // With a requantization performed in a single step there won't be uncertainties introduced
-    const int32_t new_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);
+    const int32_t new_offset =
+        dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);
 
-    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
-    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
+    const float   requant_scale = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t requant_offset =
+        dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
 
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
-        const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
-        const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+    execute_window_loop(
+        window_out,
+        [&](const Coordinates &id)
         {
-            if(pool_info.pool_type != PoolingType::MAX)
+            const int idx_width    = id.y() * pool_stride_x;
+            const int idx_height   = id.z() * pool_stride_y;
+            const int pool_limit_y = pool_pad_top - idx_height;
+            const int pool_limit_x = pool_pad_left - idx_width;
+
+            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+            const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+            const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+            int x_off = window_start_x;
+            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
             {
-                q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-
-                // Calculate scale
-                const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                               pool_stride_y);
-
-                // Perform pooling
-                for(int y = pool_start_y; y < pool_end_y; ++y)
+                if (pool_info.pool_type != PoolingType::MAX)
                 {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                         (src->info()->strides_in_bytes().z())) + x_off);
+                    q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                    q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                    q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+                    q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
 
-                        const q16x8_t data_q16  = wrapper::vmovl(wrapper::vgetlow(data));
-                        const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
-                        vres1                   = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
-                        vres2                   = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
-                        vres3                   = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
-                        vres4                   = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
-                    }
-                }
+                    // Calculate scale
+                    const float scale = calculate_avg_scale_pool2d(
+                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
 
-                if(src_qinfo != dst_qinfo)
-                {
-                    const float32x4x4_t vres =
+                    // Perform pooling
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
                     {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
                         {
+                            const q8x16_t data = wrapper::vloadq(
+                                reinterpret_cast<const T *>(
+                                    in.ptr() +
+                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                x_off);
+
+                            const q16x8_t data_q16  = wrapper::vmovl(wrapper::vgetlow(data));
+                            const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
+                            vres1                   = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
+                            vres2                   = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
+                            vres3                   = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
+                            vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
+                        }
+                    }
+
+                    if (src_qinfo != dst_qinfo)
+                    {
+                        const float32x4x4_t vres = {{
                             vcvtq_f32_q32(vres1),
                             vcvtq_f32_q32(vres2),
                             vcvtq_f32_q32(vres3),
                             vcvtq_f32_q32(vres4),
+                        }};
+                        const auto          requantized_dst =
+                            vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
+                        // Store result
+                        wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
+                        wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8,
+                                        wrapper::vgethigh(requantized_dst));
+                    }
+                    else
+                    {
+                        const float32x4_t scale_v = vdupq_n_f32(scale);
+                        // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+                        vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
+                        vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
+                        vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
+                        vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
+
+                        const q8x8_t res1 =
+                            wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
+                        const q8x8_t res2 =
+                            wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
+                        // Store result
+                        wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, res1);
+                        wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, res2);
+                    }
+                }
+                else
+                {
+                    q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
+
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const q8x16_t data = wrapper::vloadq(
+                                reinterpret_cast<const T *>(
+                                    in.ptr() +
+                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                x_off);
+                            vres = wrapper::vmax(vres, data);
                         }
-                    };
-                    const auto requantized_dst = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
+                    }
+
                     // Store result
-                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
-                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, wrapper::vgethigh(requantized_dst));
+                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+                                    (src_qinfo != dst_qinfo)
+                                        ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres),
+                                                                               wrapper::vgethigh(vres), requant_qinfo)
+                                        : vres);
+                }
+            }
+
+            if (pool_info.pool_type == PoolingType::MAX)
+            {
+                for (; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
+                {
+                    q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const q8x8_t data = wrapper::vload(
+                                reinterpret_cast<const T *>(
+                                    in.ptr() +
+                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                x_off);
+                            vres = wrapper::vmax(vres, data);
+                        }
+                    }
+
+                    // Store result
+                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+                                    (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
+                }
+            }
+
+            // Left-overs loop
+            for (; x_off < window_end_x; ++x_off)
+            {
+                if (pool_info.pool_type != PoolingType::MAX)
+                {
+                    q32_t res = static_cast<q32_t>(0.f);
+
+                    // Calculate scale
+                    const float scale = calculate_avg_scale_pool2d(
+                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                    // Perform pooling
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
+                    {
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const T data =
+                                *(reinterpret_cast<const T *>(
+                                      in.ptr() +
+                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                  x_off);
+                            res += data;
+                        }
+                    }
+
+                    if (src_qinfo != dst_qinfo)
+                    {
+                        const float res_f          = static_cast<float>(res);
+                        const float new_scale      = quant_rescale / scale;
+                        const auto requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
+
+                        // Store result
+                        *(reinterpret_cast<T *>(out.ptr()) + x_off) = requantized_dst;
+                    }
+                    else
+                    {
+                        // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+                        res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
+
+                        // Store result
+                        *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+                    }
                 }
                 else
                 {
-                    const float32x4_t scale_v = vdupq_n_f32(scale);
-                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
-                    vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
-                    vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
-                    vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
-                    vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
+                    T res = std::numeric_limits<T>::min();
 
-                    const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
-                    const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
-                    // Store result
-                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, res1);
-                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, res2);
-                }
-            }
-            else
-            {
-                q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    for (int y = pool_start_y; y < pool_end_y; ++y)
                     {
-                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                         (src->info()->strides_in_bytes().z())) + x_off);
-                        vres               = wrapper::vmax(vres, data);
+                        for (int x = pool_start_x; x < pool_end_x; ++x)
+                        {
+                            const T data =
+                                *(reinterpret_cast<const T *>(
+                                      in.ptr() +
+                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+                                  x_off);
+                            res = std::max(res, data);
+                        }
                     }
-                }
-
-                // Store result
-                wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
-                                requant_qinfo) :
-                                vres);
-            }
-        }
-
-        if(pool_info.pool_type == PoolingType::MAX)
-        {
-            for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
-            {
-                q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                       (src->info()->strides_in_bytes().z())) + x_off);
-                        vres              = wrapper::vmax(vres, data);
-                    }
-                }
-
-                // Store result
-                wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
-                                (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
-            }
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            if(pool_info.pool_type != PoolingType::MAX)
-            {
-                q32_t res = static_cast<q32_t>(0.f);
-
-                // Calculate scale
-                const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                               pool_stride_y);
-
-                // Perform pooling
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                     (src->info()->strides_in_bytes().z())) + x_off);
-                        res += data;
-                    }
-                }
-
-                if(src_qinfo != dst_qinfo)
-                {
-                    const float res_f           = static_cast<float>(res);
-                    const float new_scale       = quant_rescale / scale;
-                    const auto  requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
 
                     // Store result
-                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = requantized_dst;
-                }
-                else
-                {
-                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
-                    res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
-
-                    // Store result
-                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
-                }
-            }
-            else
-            {
-                T res = std::numeric_limits<T>::min();
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
+                    if (src_qinfo != dst_qinfo)
                     {
-                        const T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                     (src->info()->strides_in_bytes().z())) + x_off);
-                        res          = std::max(res, data);
+                        const float res_f                           = static_cast<float>(res);
+                        *(reinterpret_cast<T *>(out.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
+                    }
+                    else
+                    {
+                        *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
                     }
                 }
-
-                // Store result
-                if(src_qinfo != dst_qinfo)
-                {
-                    const float res_f                           = static_cast<float>(res);
-                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
-                }
-                else
-                {
-                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
-                }
             }
-        }
-
-    },
-    in, out);
+        },
+        in, out);
 }
 
 #if defined(ENABLE_NCHW_KERNELS)
 template <typename T, typename TVec>
-inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
-                               const int pool_size, const int upper_bound_w, const int upper_bound_h,
-                               const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+inline void scale_vector_q16x8(bool               exclude_padding,
+                               TVec              &v,
+                               const Coordinates &id,
+                               int                id_offset,
+                               int                step,
+                               const int          pool_size,
+                               const int          upper_bound_w,
+                               const int          upper_bound_h,
+                               const int          pad_x,
+                               const int          pad_y,
+                               const int          stride_x,
+                               const int          stride_y)
 {
     int       start_x = (id.x() + id_offset) * stride_x - pad_x;
     int       start_y = id.y() * stride_y - pad_y;
     const int end_y   = std::min(start_y + pool_size, upper_bound_h);
-    if(exclude_padding)
+    if (exclude_padding)
     {
         start_y = std::max(0, start_y);
     }
 
-    std::array<T, 8> elems =
-    {
-        {
-            wrapper::vgetlane(v, 0),
-            wrapper::vgetlane(v, 1),
-            wrapper::vgetlane(v, 2),
-            wrapper::vgetlane(v, 3),
-            wrapper::vgetlane(v, 4),
-            wrapper::vgetlane(v, 5),
-            wrapper::vgetlane(v, 6),
-            wrapper::vgetlane(v, 7),
-        }
-    };
+    std::array<T, 8> elems = {{
+        wrapper::vgetlane(v, 0),
+        wrapper::vgetlane(v, 1),
+        wrapper::vgetlane(v, 2),
+        wrapper::vgetlane(v, 3),
+        wrapper::vgetlane(v, 4),
+        wrapper::vgetlane(v, 5),
+        wrapper::vgetlane(v, 6),
+        wrapper::vgetlane(v, 7),
+    }};
 
-    for(auto &el : elems)
+    for (auto &el : elems)
     {
         int       c_start_x = start_x;
         const int end_x     = std::min(c_start_x + pool_size, upper_bound_w);
-        if(exclude_padding)
+        if (exclude_padding)
         {
             c_start_x = std::max(0, c_start_x);
         }
@@ -326,15 +367,16 @@
 }
 
 template <typename T>
-auto load16_boundary_aware(int srcw, int srch, int pad_l, int pad_r, int pad_t, int pad_b, int x, int y, const T *ptr, T fval)
+auto load16_boundary_aware(
+    int srcw, int srch, int pad_l, int pad_r, int pad_t, int pad_b, int x, int y, const T *ptr, T fval)
 {
     ARM_COMPUTE_UNUSED(pad_b, pad_r);
     T vec[16];
     //handle reading a row out of the tensor
     const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
-    for(int i = 0; i < 16; i++)
+    for (int i = 0; i < 16; i++)
     {
-        if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+        if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
         {
             vec[i] = *(ptr + i);
         }
@@ -349,24 +391,24 @@
 template <typename T, typename V, bool deinterleave>
 inline void write16_boundary_aware(int x, int dst_w, const V &lower, const V &upper, T *ptr)
 {
-    if(deinterleave)
+    if (deinterleave)
     {
-        for(int i = 0; i < 8 && (i * 2 + x) < dst_w; ++i)
+        for (int i = 0; i < 8 && (i * 2 + x) < dst_w; ++i)
         {
             *(ptr + i * 2) = lower[i];
         }
-        for(int i = 0; i < 8 && (i * 2 + x + 1) < dst_w; ++i)
+        for (int i = 0; i < 8 && (i * 2 + x + 1) < dst_w; ++i)
         {
             *(ptr + 1 + i * 2) = upper[i];
         }
     }
     else
     {
-        for(int i = 0; i < 8 && (i + x) < dst_w; ++i)
+        for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
         {
             *(ptr + i) = lower[i];
         }
-        for(int i = 0; i < 8 && (i + x + 8) < dst_w; ++i)
+        for (int i = 0; i < 8 && (i + x + 8) < dst_w; ++i)
         {
             *(ptr + i + 8) = upper[i];
         }
@@ -376,14 +418,19 @@
 template <typename T, typename V>
 inline void write8_boundary_aware(int x, int dst_w, const V &v, T *ptr)
 {
-    for(int i = 0; i < 8 && (i + x) < dst_w; ++i)
+    for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
     {
         *(ptr + i) = v[i];
     }
 }
 
 template <typename T>
-void pooling2_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_quantized_neon_nchw(const ITensor    *src,
+                                  ITensor          *dst0,
+                                  ITensor          *dst1,
+                                  PoolingLayerInfo &pool_info,
+                                  const Window     &window_src,
+                                  const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
@@ -397,129 +444,136 @@
     using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
     using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
 
-    constexpr int pool_size       = 2;
-    int           pool_stride_x   = 0;
-    int           pool_stride_y   = 0;
-    const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+    constexpr int pool_size                = 2;
+    int           pool_stride_x            = 0;
+    int           pool_stride_y            = 0;
+    const int     pool_pad_right           = pool_info.pad_stride_info.pad_right();
+    const int     pool_pad_top             = pool_info.pad_stride_info.pad_top();
+    const int     pool_pad_left            = pool_info.pad_stride_info.pad_left();
+    const int     pool_pad_bottom          = pool_info.pad_stride_info.pad_bottom();
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
-    const int                     upper_bound_w        = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
-    const int                     upper_bound_h        = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
-    const T *const                src_top_ptr          = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
-    const T *const                src_bottom_ptr       = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+    const int      upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+    const int      upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+    const T *const src_top_ptr   = reinterpret_cast<const T *>(
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+    const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
     const int                     scale_step_x         = (pool_stride_x == 1) ? 2 : 1;
     const UniformQuantizationInfo src_qinfo            = src->info()->quantization_info().uniform();
     const UniformQuantizationInfo dst_qinfo            = dst0->info()->quantization_info().uniform();
     const bool                    have_different_qinfo = src_qinfo != dst_qinfo;
 
-    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
-    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
-    const int                     src_w          = src->info()->dimension(0);
-    const int                     src_h          = src->info()->dimension(1);
-    const int                     dst_w          = dst0->info()->dimension(0);
+    const float   requant_scale = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t requant_offset =
+        dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+    const int                     src_w         = src->info()->dimension(0);
+    const int                     src_h         = src->info()->dimension(1);
+    const int                     dst_w         = dst0->info()->dimension(0);
 
     const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? std::numeric_limits<T>::min() : T(0);
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto x_val   = id.x() * pool_stride_x;
-        const auto y_val_0 = id.y() * pool_stride_y;
-        const auto y_val_1 = (id.y() * pool_stride_y) + 1;
-
-        auto top_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom,
-                                              x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
-        auto bottom_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom,
-                                                 x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
-
-        q8x8_t lower_res = {};
-        q8x8_t upper_res = {};
-
-        if(pool_info.pool_type != PoolingType::MAX)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
-            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
+            const auto x_val   = id.x() * pool_stride_x;
+            const auto y_val_0 = id.y() * pool_stride_y;
+            const auto y_val_1 = (id.y() * pool_stride_y) + 1;
 
-            // Add rows
-            const q16x8x2_t vrsum =
+            auto top_data =
+                load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+                                      y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+            auto bottom_data =
+                load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+                                      y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+            q8x8_t lower_res = {};
+            q8x8_t upper_res = {};
+
+            if (pool_info.pool_type != PoolingType::MAX)
             {
-                {
+                const q16x8x2_t top_data_q16 = {
+                    {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+                const q16x8x2_t bottom_data_q16 = {
+                    {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+                // Add rows
+                const q16x8x2_t vrsum = {{
                     wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
                     wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
-                }
-            };
+                }};
 
-            // Pair-wise add row data
-            const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
-            const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
+                // Pair-wise add row data
+                const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
+                const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
 
-            q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
+                q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
 
-            // Scale lower result
-            scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_lower, id, 0, scale_step_x,
-                                               pool_size, upper_bound_w, upper_bound_h,
-                                               pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-            lower_res = wrapper::vmovn(res_lower);
+                // Scale lower result
+                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_lower, id, 0, scale_step_x, pool_size,
+                                                   upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+                                                   pool_stride_x, pool_stride_y);
+                lower_res = wrapper::vmovn(res_lower);
 
-            // Compute upper result for stride_x == 1
-            if(pool_stride_x == 1)
-            {
-                // Shifted row sum
-                const q16x8x2_t vrsum_shifted =
+                // Compute upper result for stride_x == 1
+                if (pool_stride_x == 1)
                 {
-                    {
-                        wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
-                        wrapper::vext_1(vrsum.val[1], vrsum.val[1])
-                    }
-                };
+                    // Shifted row sum
+                    const q16x8x2_t vrsum_shifted = {
+                        {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
 
-                // Pair-wise add shifted row
-                q16x8_t res_upper = wrapper::vcombine(
-                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
-                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));
+                    // Pair-wise add shifted row
+                    q16x8_t res_upper = wrapper::vcombine(
+                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
+                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]),
+                                       wrapper::vgethigh(vrsum_shifted.val[1])));
 
-                // Scale upper result
-                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_upper, id, 1, 2,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                upper_res = wrapper::vmovn(res_upper);
+                    // Scale upper result
+                    scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_upper, id, 1, 2, pool_size,
+                                                       upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+                                                       pool_stride_x, pool_stride_y);
+                    upper_res = wrapper::vmovn(res_upper);
+                }
             }
-        }
-        else
-        {
-            const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
-            lower_res              = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
-            if(pool_stride_x == 1)
+            else
             {
-                const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
-                upper_res                      = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
+                const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
+                lower_res              = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
+                if (pool_stride_x == 1)
+                {
+                    const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
+                    upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
+                }
             }
-        }
 
-        if(have_different_qinfo)
-        {
-            const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
-            lower_res                  = wrapper::vgetlow(requantized_dst);
-            upper_res                  = wrapper::vgethigh(requantized_dst);
-        }
-        auto out_ptr = reinterpret_cast<T *>(out.ptr());
-        // Store result
-        if(pool_stride_x == 1)
-        {
-            write16_boundary_aware<T, q8x8_t, true>(id.x(), dst_w, lower_res, upper_res, out_ptr);
-        }
-        else
-        {
-            write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, lower_res, out_ptr);
-        }
-    },
-    in, out);
+            if (have_different_qinfo)
+            {
+                const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
+                lower_res                  = wrapper::vgetlow(requantized_dst);
+                upper_res                  = wrapper::vgethigh(requantized_dst);
+            }
+            auto out_ptr = reinterpret_cast<T *>(out.ptr());
+            // Store result
+            if (pool_stride_x == 1)
+            {
+                write16_boundary_aware<T, q8x8_t, true>(id.x(), dst_w, lower_res, upper_res, out_ptr);
+            }
+            else
+            {
+                write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, lower_res, out_ptr);
+            }
+        },
+        in, out);
 }
 
 template <typename T>
-void pooling3_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling3_quantized_neon_nchw(const ITensor    *src,
+                                  ITensor          *dst0,
+                                  ITensor          *dst1,
+                                  PoolingLayerInfo &pool_info,
+                                  const Window     &window_src,
+                                  const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
@@ -533,13 +587,13 @@
     using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
     using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
 
-    constexpr int pool_size       = 3;
-    const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int           pool_stride_x   = 0;
-    int           pool_stride_y   = 0;
+    constexpr int pool_size                = 3;
+    const int     pool_pad_right           = pool_info.pad_stride_info.pad_right();
+    const int     pool_pad_top             = pool_info.pad_stride_info.pad_top();
+    const int     pool_pad_left            = pool_info.pad_stride_info.pad_left();
+    const int     pool_pad_bottom          = pool_info.pad_stride_info.pad_bottom();
+    int           pool_stride_x            = 0;
+    int           pool_stride_y            = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
     const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
     const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
@@ -547,147 +601,145 @@
     const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
     const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
 
-    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
-    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
+    const float   requant_scale = dst_qinfo.scale / src_qinfo.scale;
+    const int32_t requant_offset =
+        dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+    const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
 
-    const T *const src_top_ptr    = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
-    const T *const src_middle_ptr = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
-    const T *const src_bottom_ptr = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
+    const T *const src_top_ptr = reinterpret_cast<const T *>(
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+    const T *const src_middle_ptr = reinterpret_cast<const T *>(
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+    const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
 
     const int src_w      = src->info()->dimension(0);
     const int src_h      = src->info()->dimension(1);
     const T   fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
     const int dst_w      = dst0->info()->dimension(0);
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto x_val   = id.x() * pool_stride_x;
-        const auto y_val_0 = id.y() * pool_stride_y;
-        const auto y_val_1 = (id.y() * pool_stride_y) + 1;
-        const auto y_val_2 = (id.y() * pool_stride_y) + 2;
-
-        auto top_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom,
-                                              x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
-        auto middle_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom,
-                                                 x_val, y_val_1, reinterpret_cast<const T *>(src_middle_ptr + in.offset()), fill_value);
-        auto bottom_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom,
-                                                 x_val, y_val_2, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
-
-        q8x8_t  fres  = {};
-        q8x16_t fqres = {};
-
-        if(pool_info.pool_type == PoolingType::AVG)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            // Convert data to u16
-            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
-            const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
-            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
+            const auto x_val   = id.x() * pool_stride_x;
+            const auto y_val_0 = id.y() * pool_stride_y;
+            const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+            const auto y_val_2 = (id.y() * pool_stride_y) + 2;
 
-            // Calculate row sums
-            const q16x8x2_t vrsum =
+            auto top_data =
+                load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+                                      y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+            auto middle_data =
+                load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+                                      y_val_1, reinterpret_cast<const T *>(src_middle_ptr + in.offset()), fill_value);
+            auto bottom_data =
+                load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+                                      y_val_2, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+            q8x8_t  fres  = {};
+            q8x16_t fqres = {};
+
+            if (pool_info.pool_type == PoolingType::AVG)
             {
-                {
-                    wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
-                    wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
-                }
-            };
-            const q16x8x2_t vrsum_shifted_1 =
-            {
-                {
-                    wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
-                    wrapper::vext_1(vrsum.val[1], vrsum.val[1])
-                }
-            };
-            const q16x8x2_t vrsum_shifted_2 =
-            {
-                {
-                    wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
-                    wrapper::vext_2(vrsum.val[1], vrsum.val[1])
-                }
-            };
-            // Calculate final sum
-            q16x8x2_t final_sum =
-            {
-                {
+                // Convert data to u16
+                const q16x8x2_t top_data_q16 = {
+                    {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+                const q16x8x2_t middle_data_q16 = {
+                    {wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data))}};
+                const q16x8x2_t bottom_data_q16 = {
+                    {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+                // Calculate row sums
+                const q16x8x2_t vrsum           = {{
+                              wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
+                              wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
+                }};
+                const q16x8x2_t vrsum_shifted_1 = {
+                    {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
+                const q16x8x2_t vrsum_shifted_2 = {
+                    {wrapper::vext_2(vrsum.val[0], vrsum.val[1]), wrapper::vext_2(vrsum.val[1], vrsum.val[1])}};
+                // Calculate final sum
+                q16x8x2_t final_sum = {{
                     wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
                     wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
-                }
-            };
-            if(pool_stride_x == 2)
-            {
-                q16x8_t res =
+                }};
+                if (pool_stride_x == 2)
                 {
-                    wrapper::vgetlane(final_sum.val[0], 0),
-                    wrapper::vgetlane(final_sum.val[0], 2),
-                    wrapper::vgetlane(final_sum.val[0], 4),
-                    wrapper::vgetlane(final_sum.val[0], 6),
-                    wrapper::vgetlane(final_sum.val[1], 0),
-                    wrapper::vgetlane(final_sum.val[1], 2),
-                    wrapper::vgetlane(final_sum.val[1], 4),
-                    wrapper::vgetlane(final_sum.val[1], 6),
-                };
+                    q16x8_t res = {
+                        wrapper::vgetlane(final_sum.val[0], 0), wrapper::vgetlane(final_sum.val[0], 2),
+                        wrapper::vgetlane(final_sum.val[0], 4), wrapper::vgetlane(final_sum.val[0], 6),
+                        wrapper::vgetlane(final_sum.val[1], 0), wrapper::vgetlane(final_sum.val[1], 2),
+                        wrapper::vgetlane(final_sum.val[1], 4), wrapper::vgetlane(final_sum.val[1], 6),
+                    };
 
-                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res, id, 0, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                fres = wrapper::vmovn(res);
+                    scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res, id, 0, 1, pool_size,
+                                                       upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+                                                       pool_stride_x, pool_stride_y);
+                    fres = wrapper::vmovn(res);
+                }
+                else
+                {
+                    // Scale lower result
+                    scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[0], id, 0, 1, pool_size,
+                                                       upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+                                                       pool_stride_x, pool_stride_y);
+                    // Scale lower result
+                    scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[1], id, 8, 1, pool_size,
+                                                       upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+                                                       pool_stride_x, pool_stride_y);
+                    fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
+                }
             }
             else
             {
-                // Scale lower result
-                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[0], id, 0, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                // Scale lower result
-                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[1], id, 8, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
-            }
-        }
-        else
-        {
-            const q8x16_t max_data        = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
-            const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
-            const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
-            const q8x16_t final_max       = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
+                const q8x16_t max_data        = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
+                const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
+                const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
+                const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
 
-            if(pool_stride_x == 2)
+                if (pool_stride_x == 2)
+                {
+                    const q8x8x2_t      table      = {{wrapper::vgetlow(final_max), wrapper::vgethigh(final_max)}};
+                    static const q8x8_t lookup_val = {0, 2, 4, 6, 8, 10, 12, 14};
+                    fres                           = wrapper::vtbl(table, lookup_val);
+                }
+                else
+                {
+                    fqres = final_max;
+                }
+            }
+
+            // Store result
+            if (pool_stride_x == 1)
             {
-                const q8x8x2_t      table      = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
-                static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
-                fres                           = wrapper::vtbl(table, lookup_val);
+                if (src_qinfo != dst_qinfo)
+                {
+                    fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres),
+                                                                 requant_qinfo);
+                }
+                write16_boundary_aware<T, q8x8_t, false>(id.x(), dst_w, wrapper::vgetlow(fqres),
+                                                         wrapper::vgethigh(fqres), reinterpret_cast<T *>(out.ptr()));
             }
             else
             {
-                fqres = final_max;
+                if (src_qinfo != dst_qinfo)
+                {
+                    fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
+                }
+                write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, fres, reinterpret_cast<T *>(out.ptr()));
             }
-        }
-
-        // Store result
-        if(pool_stride_x == 1)
-        {
-            if(src_qinfo != dst_qinfo)
-            {
-                fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
-            }
-            write16_boundary_aware<T, q8x8_t, false>(id.x(), dst_w, wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), reinterpret_cast<T *>(out.ptr()));
-        }
-        else
-        {
-            if(src_qinfo != dst_qinfo)
-            {
-                fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
-            }
-            write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, fres, reinterpret_cast<T *>(out.ptr()));
-        }
-    },
-    in, out);
+        },
+        in, out);
 }
 
 template <typename T>
-void poolingMxN_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_quantized_neon_nchw(const ITensor    *src,
+                                    ITensor          *dst0,
+                                    ITensor          *dst1,
+                                    PoolingLayerInfo &pool_info,
+                                    const Window     &window_src,
+                                    const Window     &window)
 {
     ARM_COMPUTE_UNUSED(dst1);
     Iterator in(src, window_src);
@@ -697,74 +749,81 @@
     using q16_t = typename wrapper::traits::promote_t<T>;
     using q32_t = typename wrapper::traits::promote_t<q16_t>;
 
-    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
-    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
-    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
+    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
+    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
+    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
+    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
+    int       pool_stride_x                = 0;
+    int       pool_stride_y                = 0;
     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
     const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
     const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
 
-    const UniformQuantizationInfo &src_qinfo        = src->info()->quantization_info().uniform();
-    const UniformQuantizationInfo &dst_qinfo        = dst0->info()->quantization_info().uniform();
-    const int                      src_w            = src->info()->dimension(0);
-    const int                      src_h            = src->info()->dimension(1);
-    const T                        fill_value       = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
-    const int                      stridex_in_bytes = static_cast<int>(src->info()->strides_in_bytes().x());
-    const int                      stridey_in_bytes = static_cast<int>(src->info()->strides_in_bytes().y());
+    const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
+    const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
+    const int                      src_w     = src->info()->dimension(0);
+    const int                      src_h     = src->info()->dimension(1);
+    const T   fill_value       = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
+    const int stridex_in_bytes = static_cast<int>(src->info()->strides_in_bytes().x());
+    const int stridey_in_bytes = static_cast<int>(src->info()->strides_in_bytes().y());
 
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        T res = std::numeric_limits<T>::min();
-
-        if(pool_info.pool_type != PoolingType::MAX)
+    execute_window_loop(
+        window,
+        [&](const Coordinates &id)
         {
-            q32_t sres = 0;
+            T res = std::numeric_limits<T>::min();
 
-            // Calculate scale
-            const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                           pool_stride_y);
-
-            // Perform pooling
-            for(int y = 0; y < pool_size_y; ++y)
+            if (pool_info.pool_type != PoolingType::MAX)
             {
-                for(int x = 0; x < pool_size_x; ++x)
-                {
-                    const auto in_ptr = reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+                q32_t sres = 0;
 
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    const T   data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
-                    sres += data;
+                // Calculate scale
+                const float scale = calculate_avg_scale_pool2d(
+                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+                    upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+                // Perform pooling
+                for (int y = 0; y < pool_size_y; ++y)
+                {
+                    for (int x = 0; x < pool_size_x; ++x)
+                    {
+                        const auto in_ptr = reinterpret_cast<const T *>(
+                            in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        const T   data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+                        sres += data;
+                    }
+                }
+                // Divide by scale
+                res = static_cast<T>(support::cpp11::round(sres * scale));
+            }
+            else
+            {
+                for (int y = 0; y < pool_size_y; ++y)
+                {
+                    for (int x = 0; x < pool_size_x; ++x)
+                    {
+                        const auto in_ptr = reinterpret_cast<const T *>(
+                            in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
+                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
+                        const T   data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+                        res            = std::max(res, data);
+                    }
                 }
             }
-            // Divide by scale
-            res = static_cast<T>(support::cpp11::round(sres * scale));
-        }
-        else
-        {
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                for(int x = 0; x < pool_size_x; ++x)
-                {
-                    const auto in_ptr = reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
-
-                    const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
-                    const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
-                    const T   data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
-                    res            = std::max(res, data);
-                }
-            }
-        }
-        // Store result
-        res                                 = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo) : res;
-        *(reinterpret_cast<T *>(out.ptr())) = res;
-    },
-    in, out);
+            // Store result
+            res                                 = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(
+                                                                                 Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo)
+                                                                           : res;
+            *(reinterpret_cast<T *>(out.ptr())) = res;
+        },
+        in, out);
 }
 #endif /* defined(ENABLE_NCHW_KERNELS) */
 } // namespace cpu