blob: 83c3355de4fa88daf4f55a797a9766d096214277 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H
#define SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H
#if defined(__ARM_FEATURE_SVE)
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/SVEMath.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/core/NEON/wrapper/svtraits.h"
#include <arm_sve.h>
namespace arm_compute
{
namespace cpu
{
namespace sve
{
using namespace arm_compute::wrapper;
template <typename VectorType>
inline VectorType elementwise_pow(svbool_t &pg, const VectorType &a, const VectorType &b)
{
return svpow_z(pg, a, b);
}
template <>
inline svint32_t elementwise_pow<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
{
return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
}
template <typename VectorType>
inline VectorType elementwise_div(svbool_t &pg, const VectorType &a, const VectorType &b)
{
return svdiv_z(pg, a, b);
}
template <>
inline svint32_t elementwise_div<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
{
return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
}
template <typename VectorType>
inline VectorType elementwise_arithmetic_op(svbool_t &pg, const VectorType &a, const VectorType &b, ArithmeticOperation op)
{
using ScalarType = typename sve_scalar<VectorType>::type;
VectorType res{};
switch(op)
{
case ArithmeticOperation::MAX:
res = svmax_z(pg, a, b);
break;
case ArithmeticOperation::MIN:
res = svmin_z(pg, a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
const auto tmp = svsub_z(pg, a, b);
res = svmul_z(pg, tmp, tmp);
break;
}
case ArithmeticOperation::PRELU:
{
const auto zero = svdup_n(ScalarType(0));
const auto tmp = svmul_z(pg, a, b);
const auto gt = svcmpgt(pg, a, zero);
res = svsel(gt, a, tmp);
break;
}
case ArithmeticOperation::DIV:
{
res = elementwise_div(pg, a, b);
break;
}
case ArithmeticOperation::POWER:
{
res = elementwise_pow(pg, a, b);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <uint32_t bytewidth>
inline svbool_t narrow_to_byte_predicate(svbool_t pg)
{
const auto all_false = svpfalse();
switch(bytewidth)
{
case 8:
pg = svuzp1_b32(pg, all_false);
/* fall through */
case 4:
pg = svuzp1_b16(pg, all_false);
/* fall through */
case 2:
pg = svuzp1_b8(pg, all_false);
/* fall through */
default:
break;
}
return pg;
}
template <typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comparison_op(svbool_t &pg, const InputVectorType &a, const InputVectorType &b, ComparisonOperation op)
{
svbool_t selection_vector{};
switch(op)
{
case ComparisonOperation::Equal:
selection_vector = svcmpeq(pg, a, b);
break;
case ComparisonOperation::NotEqual:
selection_vector = svcmpne(pg, a, b);
break;
case ComparisonOperation::Greater:
selection_vector = svcmpgt(pg, a, b);
break;
case ComparisonOperation::GreaterEqual:
selection_vector = svcmpge(pg, a, b);
break;
case ComparisonOperation::Less:
selection_vector = svcmplt(pg, a, b);
break;
case ComparisonOperation::LessEqual:
selection_vector = svcmple(pg, a, b);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
using InputScalarType = typename sve_scalar<InputVectorType>::type;
selection_vector = narrow_to_byte_predicate<sizeof(InputScalarType)>(selection_vector);
using OutputScalarType = typename sve_scalar<OutputVectorType>::type;
const auto false_vector = svdup_n(static_cast<OutputScalarType>((uint32_t)0));
const auto true_vector = svdup_n(static_cast<OutputScalarType>(~(uint32_t)0));
auto ret = svsel(selection_vector, true_vector, false_vector);
return ret;
}
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct LoopArguments
{
OperatorType op;
const InputScalarType *input1_ptr;
const InputScalarType *input2_ptr;
OutputScalarType *output_ptr;
};
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct BroadcastLoopArguments
{
OperatorType op;
const InputScalarType *input1_ptr;
InputScalarType broadcast_value;
OutputScalarType *output_ptr;
bool reorder;
};
template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_loop(svbool_t pg, const LoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
const auto in1 = svld1(pg, args.input1_ptr);
const auto in2 = svld1(pg, args.input2_ptr);
const auto res = elementwise_arithmetic_op<typename sve_vector<InputScalarType>::type>(pg, in1, in2, args.op);
svst1(pg, args.output_ptr, res);
}
template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_broadcast_loop(svbool_t pg, const BroadcastLoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
const auto non_broadcast_vector = svld1(pg, args.input1_ptr);
const auto broadcast_vector = svdup_n(args.broadcast_value);
const auto in1 = args.reorder ? broadcast_vector : non_broadcast_vector;
const auto in2 = args.reorder ? non_broadcast_vector : broadcast_vector;
const auto res = elementwise_arithmetic_op<typename sve_vector<InputScalarType>::type>(pg, in1, in2, args.op);
svst1(pg, args.output_ptr, res);
}
template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_loop(svbool_t pg, const LoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
const auto in1 = svld1(pg, args.input1_ptr);
const auto in2 = svld1(pg, args.input2_ptr);
const auto res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, in1, in2, args.op);
const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
svst1(output_pg, args.output_ptr, res);
}
template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_broadcast_loop(svbool_t pg, const BroadcastLoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
const auto non_broadcast_vector = svld1(pg, args.input1_ptr);
const auto broadcast_vector = svdup_n(args.broadcast_value);
const auto in1 = args.reorder ? broadcast_vector : non_broadcast_vector;
const auto in2 = args.reorder ? non_broadcast_vector : broadcast_vector;
const auto res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, in1, in2, args.op);
const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
svst1(output_pg, args.output_ptr, res);
}
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using LoopFuncType = void (*)(svbool_t, const LoopArguments<InputScalarType, OutputScalarType, OperatorType> &);
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using BroadcastLoopFuncType = void (*)(svbool_t, const BroadcastLoopArguments<InputScalarType, OutputScalarType, OperatorType> &);
template <typename InputVectorType, typename OutputVectorType, typename OperatorType,
typename InputScalarType = typename sve_scalar<InputVectorType>::type,
typename OutputScalarType = typename sve_scalar<OutputVectorType>::type>
void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
OperatorType op,
LoopFuncType<InputScalarType, OutputScalarType, OperatorType> func,
BroadcastLoopFuncType<InputScalarType, OutputScalarType, OperatorType> broadcast_func)
{
const auto all_true_pg = svptrue<InputScalarType>();
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
int x = window_start_x;
svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
do
{
broadcast_func(pg,
{
op,
non_broadcast_input_ptr + x,
broadcast_value,
output_ptr + x,
!is_broadcast_input_2
});
x += svcnt<InputScalarType>();
pg = svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = window_start_x;
svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
do
{
func(pg,
{
op,
input1_ptr + x,
input2_ptr + x,
output_ptr + x
});
x += svcnt<InputScalarType>();
pg = svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
input1, input2, output);
}
}
template <ArithmeticOperation op, typename ScalarType>
void elementwise_arithmetic_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
using VectorType = typename sve_vector<ScalarType>::type;
elementwise_op<VectorType, VectorType, ArithmeticOperation>(in1, in2, out, window, op,
&arithmetic_op_loop<ScalarType, ScalarType>,
&arithmetic_op_broadcast_loop<ScalarType, ScalarType>);
}
template <ComparisonOperation op, typename InputScalarType, typename OutputScalarType = uint8_t>
void elementwise_comparison_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width");
using InputVectorType = typename sve_vector<InputScalarType>::type;
using OutputVectorType = typename sve_vector<OutputScalarType>::type;
elementwise_op<InputVectorType, OutputVectorType, ComparisonOperation>(in1, in2, out, window, op,
&comparison_op_loop<InputScalarType, OutputScalarType>,
&comparison_op_broadcast_loop<InputScalarType, OutputScalarType>);
}
} // namespace sve
} // namespace cpu
} // namespace arm_compute
#endif // defined(__ARM_FEATURE_SVE)
#endif /* SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H */