blob: 04f2b142bda38aed21e74ae33f04e5e10c71f04b [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClPool2dKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
using namespace arm_compute::misc::shape_calculator;
namespace
{
// Internal window config info
using ClPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
void auto_init(const ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, PoolingLayerInfo pool_info)
{
TensorShape out_shape = compute_pool_shape(*src, pool_info);
auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
if(indices)
{
auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
}
}
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(src->data_type()) && pool_info.pool_type == PoolingType::L2),
"Unsupported combination of parameters!");
const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const bool is_global_pooling = pool_info.is_global_pooling;
unsigned int pool_size_x = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
unsigned int pool_size_y = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
int output_width = 0;
int output_height = 0;
std::tie(output_width, output_height) = scaled_dimensions_signed(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height],
pool_size_x, pool_size_y, pool_info.pad_stride_info);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_width < 1 || output_height < 1), "Calculated output dimension size is invalid");
// Check indices
if(indices)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
if(indices->total_size() != 0)
{
TensorInfo idx_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, DataType::U32));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &idx_info);
}
}
// Checks performed when dst is configured
if(dst->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info);
}
return Status{};
}
std::tuple<Status, Window, ClPoolingConfig> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
// Get data layout
const DataLayout data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
int pool_stride_x = 0;
int pool_stride_y = 0;
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
const int pool_pad_right = pad_stride_info.pad_right();
const int pool_pad_top = pad_stride_info.pad_top();
const int pool_pad_left = pad_stride_info.pad_left();
const int pool_pad_bottom = pad_stride_info.pad_bottom();
BorderSize border_size = BorderSize();
auto_init(src, dst, indices, pool_info);
pooled_w = dst->tensor_shape()[idx_width];
pooled_h = dst->tensor_shape()[idx_height];
const DataType data_type = src->data_type();
const int src_width = src->dimension(idx_width);
const int src_height = src->dimension(idx_height);
unsigned int num_elems_processed_per_iteration = 0;
bool window_changed = false;
Window win{};
switch(data_layout)
{
case DataLayout::NCHW:
{
// Initialize border size
border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
// Change the number of elements processed per iteration
// for pooling 3x3 with stride less equal than 3
const bool can_optimize = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type);
num_elems_processed_per_iteration = can_optimize ? 4 : 1;
const unsigned int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x;
// Number of iterations in X dimension
const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
// Upper limit for the number of right/bottom border elements that are accessed
const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - src_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - src_height;
border_size.right = std::max(upper_bound_w, pool_pad_right);
border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
AccessWindowRectangle src_access(src, -pool_pad_left, -pool_pad_top, num_elems_read_per_iteration, pool_size_y,
pool_stride_x, pool_stride_y);
AccessWindowHorizontal dst_access(dst, 0, num_elems_processed_per_iteration);
// Update indices window
if(indices)
{
AccessWindowHorizontal indices_access(indices, 0, num_elems_processed_per_iteration);
window_changed = update_window_and_padding(win, src_access, dst_access, indices_access);
indices_access.set_valid_region(win, ValidRegion(Coordinates(), indices->tensor_shape()));
}
else
{
window_changed = update_window_and_padding(win, src_access, dst_access);
}
dst_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
break;
}
case DataLayout::NHWC:
{
const size_t vec_size = dst->data_type() == DataType::F32 ? 2 : 4;
// Initialize border size
border_size = BorderSize();
num_elems_processed_per_iteration = adjust_vec_size(vec_size, dst->dimension(0));
win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
break;
}
default:
ARM_COMPUTE_ERROR("Not implemented");
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_tuple(err, win, ClPoolingConfig(num_elems_processed_per_iteration, border_size));
}
} // namespace
ClPool2dKernel::ClPool2dKernel()
{
_type = CLKernelType::POOL;
}
BorderSize ClPool2dKernel::border_size() const
{
return _border_size;
}
void ClPool2dKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
auto padding_info = get_padding_info({ src, dst, indices });
// Set instance variables
_pool_info = pool_info;
_data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
int pool_stride_x = 0;
int pool_stride_y = 0;
const PoolingType pool_type = pool_info.pool_type;
const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
const int idx_channel = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
const int idx_batch_size = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES);
const int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
const bool exclude_padding = pool_info.exclude_padding;
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
const int pool_pad_top = pad_stride_info.pad_top();
const int pool_pad_left = pad_stride_info.pad_left();
// Set build options
CLBuildOptions build_opts;
const DataType data_type = src->data_type();
// Configure kernel window
auto win_config = validate_and_configure_window(src, dst, pool_info, indices);
ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
ICLKernel::configure_internal(std::get<1>(win_config));
ClPoolingConfig pooling_config = std::get<2>(win_config);
_num_elems_processed_per_iteration = pooling_config.first;
_border_size = pooling_config.second;
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
// Tensor paddings are used to calculate the indicies for MAX pooling
if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
{
build_opts.add_option("-DPAD_TENSOR_LEFT=" + support::cpp11::to_string(src->padding().left));
build_opts.add_option("-DPAD_TENSOR_RIGHT=" + support::cpp11::to_string(src->padding().right));
build_opts.add_option("-DPAD_TENSOR_TOP=" + support::cpp11::to_string(src->padding().top));
build_opts.add_option("-DPAD_TENSOR_BOTTOM=" + support::cpp11::to_string(src->padding().bottom));
build_opts.add_option("-DTENSOR_CHANNEL=" + support::cpp11::to_string(src->dimension(idx_channel)));
build_opts.add_option("-DTENSOR_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
build_opts.add_option("-DTENSOR_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
}
if(is_data_type_quantized_asymmetric(data_type) && src->quantization_info() != dst->quantization_info())
{
const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
}
// Check dst dimensions
auto_init(src, dst, indices, pool_info);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left));
build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
// Set the initial value for the pooling operation accordingly with the data type
if(pool_type == PoolingType::MAX)
{
if(is_data_type_quantized(data_type))
{
PixelValue type_min{};
std::tie(type_min, std::ignore) = get_min_max(data_type);
build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get<int32_t>()));
}
else
{
build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits<float>::lowest()));
}
}
else
{
// Pool AVG and Pool L2 initial value
build_opts.add_option("-DINITIAL_VALUE=0");
}
build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
// Create kernel
switch(_data_layout)
{
case DataLayout::NCHW:
{
const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision;
const auto use_wider_accumulator = use_fp_mixed_precision && (pool_type != PoolingType::MAX);
const auto acc_data_type = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : data_type);
build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type);
build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION");
if(pool_type != PoolingType::MAX)
{
build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
}
if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type))
{
// Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
// each thread computes 4 dst elements
const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3);
std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_")
+ support::cpp11::to_string(pool_size_x);
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
else if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
{
// For max pooling with pool2x2, store indicies which will be used in max unpooling
if(data_type == DataType::F32)
{
std::string kernel_name = "pooling_layer_2_nchw_indices_fp32";
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
else if(data_type == DataType::F16)
{
std::string kernel_name = "pooling_layer_2_nchw_indices_fp16";
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
}
else // Run general case
{
std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nchw" : "pooling_layer_MxN_nchw";
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
break;
}
case DataLayout::NHWC:
{
// Floating point mixed precision is support on F16 only
const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX;
// Wider accumulation is required to avoid accuracy loss
// Case 1: Floating point mixed precision (fp16 src data and fp32 accumulation)
// Cast 2: Quantized (int8/uint8 src data and int32 accumulation )
DataType acc_data_type = data_type;
if(use_fp_mixed_precision)
{
acc_data_type = DataType::F32;
}
else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX)
{
acc_data_type = DataType::S32;
}
build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type));
build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION");
build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height)));
build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(idx_channel)));
build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(dst->dimension(idx_batch_size)));
build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % _num_elems_processed_per_iteration));
if(pool_info.pool_size == Size2D(2, 2) && is_data_type_float(data_type))
{
build_opts.add_option_if(indices != nullptr && pool_type == PoolingType::MAX, "-DEXTRACT_MAX_INDEX");
std::string kernel_name = "pooling_layer_2x2_nhwc";
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
else
{
std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nhwc" : "pooling_layer_MxN_nhwc";
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
}
break;
}
default:
ARM_COMPUTE_ERROR("Not implemented");
}
// Set config_id for enabling LWS tuning
_config_id = "pooling_layer_";
_config_id += lower_string(string_from_data_type(data_type));
_config_id += "_";
_config_id += lower_string(string_from_data_layout(_data_layout));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(idx_width));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(idx_height));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(idx_channel));
_config_id += "_";
_config_id += lower_string(string_from_data_layout(src->data_layout()));
ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::NHWC && has_padding_changed(padding_info));
}
Status ClPool2dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices));
ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(src->clone().get(), dst->clone().get(), pool_info)));
return Status{};
}
void ClPool2dKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
unsigned int pool_stride_x = 0;
unsigned int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_0));
auto indices = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_1));
// Collapse window
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
switch(_data_layout)
{
case DataLayout::NCHW:
{
Window slice = window_collapsed.first_slice_window_3D();
do
{
// Upsample src by pool size
Window in_slice(slice);
in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - _pool_info.pad_stride_info.pad_left(),
(in_slice.x().end() - _pool_info.pad_stride_info.pad_left()) * pool_stride_x,
pool_stride_x * _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - _pool_info.pad_stride_info.pad_top(),
(in_slice.y().end() - _pool_info.pad_stride_info.pad_top()) * pool_stride_y,
pool_stride_y));
// Set srcs
unsigned int idx = 0;
add_3D_tensor_argument(idx, src, in_slice);
add_3D_tensor_argument(idx, dst, slice);
if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2)))
{
add_3D_tensor_argument(idx, indices, slice);
}
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
break;
}
case DataLayout::NHWC:
{
const size_t batch_size = dst->info()->tensor_shape().total_size_upper(3);
Window slice = window_collapsed.first_slice_window_4D();
Window in_slice = window_collapsed.first_slice_window_4D();
in_slice.set(Window::DimX, Window::Dimension(0, src->info()->dimension(0), _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x));
in_slice.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y));
in_slice.set(3, Window::Dimension(0, batch_size, 1));
do
{
// Set srcs
unsigned int idx = 0;
add_4D_tensor_argument(idx, src, in_slice);
add_4D_tensor_argument(idx, dst, slice);
if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_type == PoolingType::MAX) && (_pool_info.pool_size == Size2D(2, 2)))
{
add_4D_tensor_argument(idx, indices, slice);
}
enqueue(queue, *this, slice, lws_hint());
}
while(window.slide_window_slice_4D(slice) && window.slide_window_slice_4D(in_slice));
break;
}
default:
ARM_COMPUTE_ERROR("Not implemented");
}
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute