blob: da57aa447f243f1e10cc5cd339b6850de69df754 [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyNativeKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/helpers/float_ops.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/StringSupport.h"
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
namespace
{
using ElementsProcessed = Steps;
Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
ARM_COMPUTE_RETURN_ERROR_ON(rhs_info.k0 > 16);
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((gemm_info.reinterpret_input_as_3d || gemm_info.depth_output_gemm3d != 0) && (input2 != nullptr)
&& (!gemm_info.broadcast_bias),
"Bias addition only supported with broadcast mode in case the input or output has to be reinterpreted as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for GEMM native");
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
const unsigned int k = gemm_info.k;
ARM_COMPUTE_UNUSED(m);
ARM_COMPUTE_UNUSED(n);
ARM_COMPUTE_UNUSED(k);
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != k);
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != n);
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(1) != k);
if(gemm_info.reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) * input0->dimension(2) != m);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != m);
}
if(input2 != nullptr && !(helpers::float_ops::is_zero(beta)))
{
const unsigned int input2_dim0 = input2->dimension(0);
const unsigned int input2_dim1 = input2->dimension(1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input2, input1);
if(gemm_info.broadcast_bias)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim1 != 1 || input2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim0 != n || input2_dim1 != m), "Incorrect dimension of bias matrix");
}
}
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed)
{
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
Window win{};
Window win_out{};
bool window_changed = false;
// In case both input and output have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(reinterpret_input_as_3d == reinterpret_output_as_3d)
{
reinterpret_output_as_3d = false;
}
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)));
TensorInfo tmp_info(*output);
if(reinterpret_output_as_3d)
{
// Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(output->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Configure kernel window
num_elems_processed_per_iteration_x = rhs_info.n0;
num_elems_processed_per_iteration_y = lhs_info.m0;
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input0_access(input0, 0, 0,
input0->dimension(0),
input0->dimension(1));
AccessWindowStatic input1_access(input1, 0, 0,
ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
input1->dimension(1));
AccessWindowStatic output_access(output, 0, 0,
output->dimension(0),
output->dimension(1));
if(input2 != nullptr)
{
const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
AccessWindowStatic input2_access(input2, 0, 0,
ceil_to_multiple(input2->dimension(0), bias_processed_per_iteration_x),
input2->dimension(1));
window_changed = update_window_and_padding(win, input0_access, input1_access, input2_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
}
else
{
window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
}
output_access.set_valid_region(win_out, ValidRegion(Coordinates(), output->tensor_shape()));
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMMatrixMultiplyNativeKernel::CLGEMMMatrixMultiplyNativeKernel()
: _input0(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _use_dummy_work_items(false),
_add_bias(false), _broadcast_bias(false)
{
}
void CLGEMMMatrixMultiplyNativeKernel::configure(const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha, float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
{
configure(CLKernelLibrary::get().get_compile_context(), input0, input1, input2, output, alpha, beta, lhs_info, rhs_info, gemm_info);
}
void CLGEMMMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha,
float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), (input2 != nullptr ? input2->info() : nullptr), output->info(), alpha, beta, lhs_info, rhs_info, gemm_info));
_input0 = input0;
_input1 = input1;
_input2 = helpers::float_ops::is_zero(beta) ? nullptr : input2;
_output = output;
_reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
_reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
_use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
_add_bias = _input2 != nullptr;
_broadcast_bias = gemm_info.broadcast_bias;
// In case both input and output have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
{
_reinterpret_input_as_3d = false;
_reinterpret_output_as_3d = false;
}
// Check if we need to slide the matrix B
const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
_slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(input0->info(), input1->info(), input2 != nullptr ? input2->info() : nullptr, output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
// we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
// This means that the actual m used by the kernel is given by output->info()->dimension(1) and not by gemm_info.m
const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : output->info()->dimension(1);
const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(1) : input0->info()->dimension(1);
const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(2) : input0->info()->dimension(2);
// Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
// Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
// NOTE: This might have implications on heuristics and performance
const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input0->info()->data_type()));
build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
build_opts.add_option_if(_input2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
std::string kernel_name("gemm_mm_native");
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (_add_bias ? "add_bias_" : "");
_config_id += (_broadcast_bias ? "broadcast_bias_" : "");
_config_id += (_reinterpret_input_as_3d ? "3di_" : "");
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
_config_id += lower_string(string_from_data_type(input0->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(gemm_info.k);
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.k0);
}
Status CLGEMMMatrixMultiplyNativeKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, input2, output, alpha, beta, lhs_info, rhs_info, gemm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
input1->clone().get(),
input2 != nullptr ? input2->clone().get() : nullptr,
output->clone().get(),
lhs_info,
rhs_info,
gemm_info,
num_elements_processed)
.first);
return Status{};
}
void CLGEMMMatrixMultiplyNativeKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
if(_input1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
unsigned int idx0;
if(_add_bias)
{
idx0 = 4 * num_arguments_per_2D_tensor() + 4;
}
else
{
idx0 = 3 * num_arguments_per_2D_tensor() + 3;
}
const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
unsigned int idx0;
if(_add_bias)
{
idx0 = 4 * num_arguments_per_2D_tensor() + 4 + (_reinterpret_input_as_3d ? 1 : 0);
}
else
{
idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
}
const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(!_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input0, slice);
add_2D_tensor_argument(idx, _input1, slice_b);
if(_add_bias)
{
add_2D_tensor_argument(idx, _input2, slice);
}
add_2D_tensor_argument(idx, _output, slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
if(_add_bias)
{
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input2->info()->strides_in_bytes()[2]));
}
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
}
} // namespace arm_compute