blob: aad88caff80675f4e55aace9acb7c0a50f410897 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cstddef>
#include <arm_neon.h>
namespace arm_conv {
namespace winograd {
namespace weight_transform {
void arm_fp32_4x4_3x3(
unsigned int n_channels,
const float *inptr, const size_t ld_weight_row, const size_t ld_weight_col,
float *outptr, const size_t matrix_stride
)
{
#ifdef __aarch64__
for (; n_channels >= 4; n_channels -= 4)
{
// Matrices used and computed in this kernel
float32x4_t w[3][3], Ww[6][3], V[6][6];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1q_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
// Ww[0][j] = 6*w[0][j];
Ww[0][j] = vmulq_n_f32(w[0][j], 6.0);
// Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), -4.0);
// Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
Ww[2][j] = vmulq_n_f32(vsubq_f32(vsubq_f32(w[1][j], w[0][j]), w[2][j]), 4.0);
// Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
Ww[3][j] = vmlaq_n_f32(vmlaq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
// Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
Ww[4][j] = vmlaq_n_f32(vmlsq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
// Ww[5][j] = 24*w[2][j];
Ww[5][j] = vmulq_n_f32(w[2][j], 24.0f);
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
const float recip576 = 1.0f / 576.0f;
// V[i][0] = 6*Ww[i][0];
V[i][0] = vmulq_n_f32(vmulq_n_f32(Ww[i][0], 6.0), recip576);
// V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
V[i][1] = vmulq_n_f32(vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
// V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2];
V[i][2] = vmulq_n_f32(vmulq_n_f32(vsubq_f32(vsubq_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
// V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2];
V[i][3] = vmulq_n_f32(vmlaq_n_f32(vmlaq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
// V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2];
V[i][4] = vmulq_n_f32(vmlaq_n_f32(vmlsq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
// V[i][5] = 24*Ww[i][2];
V[i][5] = vmulq_n_f32(vmulq_n_f32(Ww[i][2], 24.0f), recip576);
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
vst1q_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 4;
outptr += 4;
}
#endif // __aarch64__
for (; n_channels >= 2; n_channels -= 2)
{
// Matrices used and computed in this kernel
float32x2_t w[3][3], Ww[6][3], V[6][6];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
// Ww[0][j] = 6*w[0][j];
Ww[0][j] = vmul_n_f32(w[0][j], 6.0);
// Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), -4.0);
// Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
Ww[2][j] = vmul_n_f32(vsub_f32(vsub_f32(w[1][j], w[0][j]), w[2][j]), 4.0);
// Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
Ww[3][j] = vmla_n_f32(vmla_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
// Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
Ww[4][j] = vmla_n_f32(vmls_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f);
// Ww[5][j] = 24*w[2][j];
Ww[5][j] = vmul_n_f32(w[2][j], 24.0f);
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
const float recip576 = 1.0f / 576.0f;
// V[i][0] = 6*Ww[i][0];
V[i][0] = vmul_n_f32(vmul_n_f32(Ww[i][0], 6.0), recip576);
// V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2];
V[i][1] = vmul_n_f32(vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576);
// V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2];
V[i][2] = vmul_n_f32(vmul_n_f32(vsub_f32(vsub_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576);
// V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2];
V[i][3] = vmul_n_f32(vmla_n_f32(vmla_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
// V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2];
V[i][4] = vmul_n_f32(vmla_n_f32(vmls_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576);
// V[i][5] = 24*Ww[i][2];
V[i][5] = vmul_n_f32(vmul_n_f32(Ww[i][2], 24.0f), recip576);
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
vst1_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 2;
outptr += 2;
}
for (; n_channels; n_channels--)
{
// Matrices used and computed in this kernel
float w[3][3], Ww[6][3], V[6][6];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = *(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = 6*w[0][j];
Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j];
Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j];
Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j];
Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j];
Ww[5][j] = 24*w[2][j];
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
V[i][0] = ( 6*Ww[i][0]) / 576.0;
V[i][1] = (-4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
V[i][2] = (-4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]) / 576.0;
V[i][3] = ( 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]) / 576.0;
V[i][4] = ( 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]) / 576.0;
V[i][5] = (24*Ww[i][2]) / 576.0;
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
*(outptr + m*matrix_stride) = V[i][j];
}
}
inptr++;
outptr++;
}
}
} // namespace weight_transform
} // namespace winograd
} // namespace arm_conv