blob: 73e2e8cf7a7fcf044ba6862fe70f78983409852a [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Framework.h"
#include "Exceptions.h"
#include "support/ToolchainSupport.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#endif /* ARM_COMPUTE_CL */
#include <chrono>
#include <iostream>
#include <sstream>
#include <type_traits>
namespace arm_compute
{
namespace test
{
namespace framework
{
Framework::Framework()
{
_available_instruments.emplace(InstrumentType::WALL_CLOCK_TIMER, Instrument::make_instrument<WallClockTimer>);
#ifdef PMU_ENABLED
_available_instruments.emplace(InstrumentType::PMU_CYCLE_COUNTER, Instrument::make_instrument<CycleCounter>);
_available_instruments.emplace(InstrumentType::PMU_INSTRUCTION_COUNTER, Instrument::make_instrument<InstructionCounter>);
#endif /* PMU_ENABLED */
}
std::set<InstrumentType> Framework::available_instruments() const
{
std::set<InstrumentType> types;
for(const auto &instrument : _available_instruments)
{
types.emplace(instrument.first);
}
return types;
}
std::map<TestResult::Status, int> Framework::count_test_results() const
{
std::map<TestResult::Status, int> counts;
for(const auto &test : _test_results)
{
++counts[test.second.status];
}
return counts;
}
Framework &Framework::get()
{
static Framework instance;
return instance;
}
void Framework::init(const std::vector<InstrumentType> &instruments, int num_iterations, DatasetMode mode, const std::string &name_filter, int64_t id_filter)
{
_test_name_filter = std::regex{ name_filter };
_test_id_filter = id_filter;
_num_iterations = num_iterations;
_dataset_mode = mode;
_instruments = InstrumentType::NONE;
for(const auto &instrument : instruments)
{
_instruments |= instrument;
}
}
std::string Framework::current_suite_name() const
{
return join(_test_suite_name.cbegin(), _test_suite_name.cend(), "/");
}
void Framework::push_suite(std::string name)
{
_test_suite_name.emplace_back(std::move(name));
}
void Framework::pop_suite()
{
_test_suite_name.pop_back();
}
void Framework::add_test_info(std::string info)
{
_test_info.emplace_back(std::move(info));
}
void Framework::clear_test_info()
{
_test_info.clear();
}
bool Framework::has_test_info() const
{
return !_test_info.empty();
}
void Framework::print_test_info(std::ostream &os) const
{
os << "CONTEXT:\n";
for(const auto &str : _test_info)
{
os << " " << str << "\n";
}
}
void Framework::log_test_start(const std::string &test_name)
{
if(_printer != nullptr)
{
_printer->print_test_header(test_name);
}
}
void Framework::log_test_skipped(const std::string &test_name)
{
static_cast<void>(test_name);
}
void Framework::log_test_end(const std::string &test_name)
{
if(_printer != nullptr)
{
_printer->print_measurements(_test_results.at(test_name).measurements);
_printer->print_test_footer();
}
}
void Framework::log_failed_expectation(const std::string &msg)
{
std::cerr << "ERROR: " << msg << "\n";
if(_current_test_result != nullptr)
{
_current_test_result->status = TestResult::Status::FAILED;
}
}
int Framework::num_iterations() const
{
return _num_iterations;
}
void Framework::set_num_iterations(int num_iterations)
{
_num_iterations = num_iterations;
}
void Framework::set_throw_errors(bool throw_errors)
{
_throw_errors = throw_errors;
}
bool Framework::throw_errors() const
{
return _throw_errors;
}
bool Framework::is_selected(const TestInfo &info) const
{
if((info.mode & _dataset_mode) == DatasetMode::DISABLED)
{
return false;
}
if(_test_id_filter > -1 && _test_id_filter != info.id)
{
return false;
}
if(!std::regex_search(info.name, _test_name_filter))
{
return false;
}
return true;
}
void Framework::run_test(TestCaseFactory &test_factory)
{
const std::string test_case_name = test_factory.name();
if(test_factory.status() == TestCaseFactory::Status::DISABLED)
{
log_test_skipped(test_case_name);
set_test_result(test_case_name, TestResult(TestResult::Status::DISABLED));
return;
}
log_test_start(test_case_name);
Profiler profiler = get_profiler();
TestResult result(TestResult::Status::SUCCESS);
_current_test_result = &result;
try
{
std::unique_ptr<TestCase> test_case = test_factory.make();
try
{
test_case->do_setup();
for(int i = 0; i < _num_iterations; ++i)
{
profiler.start();
test_case->do_run();
#ifdef ARM_COMPUTE_CL
if(opencl_is_available())
{
CLScheduler::get().sync();
}
#endif /* ARM_COMPUTE_CL */
profiler.stop();
}
test_case->do_teardown();
}
catch(const TestError &error)
{
std::cerr << "FATAL ERROR: " << error.what() << "\n";
result.status = TestResult::Status::FAILED;
if(_throw_errors)
{
throw;
}
}
#ifdef ARM_COMPUTE_CL
catch(const ::cl::Error &error)
{
std::cerr << "FATAL CL ERROR: " << error.what() << " with code " << error.err() << "\n";
result.status = TestResult::Status::FAILED;
if(_throw_errors)
{
throw;
}
}
#endif /* ARM_COMPUTE_CL */
catch(const std::exception &error)
{
std::cerr << "FATAL ERROR: Received unhandled error: '" << error.what() << "'\n";
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
catch(...)
{
std::cerr << "FATAL ERROR: Received unhandled exception\n";
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
}
catch(const std::exception &error)
{
std::cerr << "FATAL ERROR: Received unhandled error during fixture creation: '" << error.what() << "'\n";
if(_throw_errors)
{
throw;
}
}
catch(...)
{
std::cerr << "FATAL ERROR: Received unhandled exception during fixture creation\n";
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
_current_test_result = nullptr;
if(test_factory.status() == TestCaseFactory::Status::EXPECTED_FAILURE && result.status == TestResult::Status::FAILED)
{
result.status = TestResult::Status::EXPECTED_FAILURE;
}
result.measurements = profiler.measurements();
set_test_result(test_case_name, result);
log_test_end(test_case_name);
}
bool Framework::run()
{
// Clear old test results
_test_results.clear();
_runtime = std::chrono::seconds{ 0 };
if(_printer != nullptr)
{
_printer->print_run_header();
}
const auto start = std::chrono::high_resolution_clock::now();
int id = 0;
for(auto &test_factory : _test_factories)
{
const std::string test_case_name = test_factory->name();
const TestInfo test_info{ id, test_case_name, test_factory->mode(), test_factory->status() };
if(is_selected(test_info))
{
run_test(*test_factory);
}
++id;
}
const auto end = std::chrono::high_resolution_clock::now();
if(_printer != nullptr)
{
_printer->print_run_footer();
}
_runtime = std::chrono::duration_cast<std::chrono::seconds>(end - start);
auto test_results = count_test_results();
std::cout << "Executed " << _test_results.size() << " test(s) ("
<< test_results[TestResult::Status::SUCCESS] << " passed, "
<< test_results[TestResult::Status::EXPECTED_FAILURE] << " expected failures, "
<< test_results[TestResult::Status::FAILED] << " failed, "
<< test_results[TestResult::Status::CRASHED] << " crashed, "
<< test_results[TestResult::Status::DISABLED] << " disabled) in " << _runtime.count() << " second(s)\n";
int num_successful_tests = test_results[TestResult::Status::SUCCESS] + test_results[TestResult::Status::EXPECTED_FAILURE];
return (static_cast<unsigned int>(num_successful_tests) == _test_results.size());
}
void Framework::set_test_result(std::string test_case_name, TestResult result)
{
_test_results.emplace(std::move(test_case_name), std::move(result));
}
void Framework::print_test_results(Printer &printer) const
{
printer.print_run_header();
for(const auto &test : _test_results)
{
printer.print_test_header(test.first);
printer.print_measurements(test.second.measurements);
printer.print_test_footer();
}
printer.print_run_footer();
}
Profiler Framework::get_profiler() const
{
Profiler profiler;
for(const auto &instrument : _available_instruments)
{
if((instrument.first & _instruments) != InstrumentType::NONE)
{
profiler.add(instrument.second());
}
}
return profiler;
}
void Framework::set_printer(Printer *printer)
{
_printer = printer;
}
std::vector<Framework::TestInfo> Framework::test_infos() const
{
std::vector<TestInfo> ids;
int id = 0;
for(const auto &factory : _test_factories)
{
TestInfo test_info{ id, factory->name(), factory->mode(), factory->status() };
if(is_selected(test_info))
{
ids.emplace_back(std::move(test_info));
}
++id;
}
return ids;
}
} // namespace framework
} // namespace test
} // namespace arm_compute