blob: 778459ae39ebb46728436be253e368d17bfeb590 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/helpers/ScaleHelpers.h"
#include "src/cpu/kernels/scale/neon/list.h"
namespace arm_compute
{
namespace
{
void qasymm8_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
// Data layout is NHWC
const int32_t input_width = src->info()->dimension(1);
const int32_t input_height = src->info()->dimension(2);
const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();
// Compute the ratio between source and destination dimensions
const float scale_x = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners);
const float scale_y = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners);
if(border_mode == BorderMode::CONSTANT)
{
const int32_t in_stride_y = src->info()->strides_in_bytes()[1];
const int32_t in_stride_z = src->info()->strides_in_bytes()[2];
// Compute the ratio between source height and destination height
Window win_off;
win_off.set(Window::DimX, Window::Dimension(0, 0, 0));
win_off.set(Window::DimY, Window::Dimension(0, 0, 0));
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(1, Window::Dimension(0, 0, 0));
win_in.set(2, Window::Dimension(0, 0, 0));
for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
{
win_off.set(d, Window::Dimension(0, 0, 0));
}
Iterator in(src, win_in);
Iterator out(dst, window);
const uint8_t const_border_value = static_cast<uint8_t>(constant_border_value.get<uint8_t>());
execute_window_loop(window, [&](const Coordinates & id)
{
const int32_t index_h = std::floor((id[2] + sampling_offset) * scale_y - sampling_offset);
const int32_t index_w = *(reinterpret_cast<const int32_t *>(offsets->ptr_to_element(Coordinates(id[1], id[2]))));
const auto dx_val = *(reinterpret_cast<const float *>(dx->ptr_to_element(Coordinates(id[1], id[2]))));
const auto dy_val = *(reinterpret_cast<const float *>(dy->ptr_to_element(Coordinates(id[1], id[2]))));
const auto pixel_row_ptr = reinterpret_cast<const uint8_t *>(in.ptr());
const auto a00 = (0 <= index_w && index_w < input_width && 0 <= index_h && index_h < input_height) ?
(*(pixel_row_ptr + index_w * in_stride_y + index_h * in_stride_z)) :
const_border_value;
const auto a01 = (-1 <= index_w && index_w + 1 < input_width && 0 <= index_h && index_h < input_height) ?
(*(pixel_row_ptr + (index_w + 1) * in_stride_y + index_h * in_stride_z)) :
const_border_value;
const auto a10 = (0 <= index_w && index_w < input_width && -1 <= index_h && index_h < input_height - 1) ?
(*(pixel_row_ptr + index_w * in_stride_y + (index_h + 1) * in_stride_z)) :
const_border_value;
const auto a11 = (-1 <= index_w && index_w < input_width - 1 && -1 <= index_h && index_h < input_height - 1) ?
(*(pixel_row_ptr + (index_w + 1) * in_stride_y + (index_h + 1) * in_stride_z)) :
const_border_value;
const float inp00 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a00, iq_info);
const float inp01 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a01, iq_info);
const float inp10 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a10, iq_info);
const float inp11 = Qasymm8QuantizationHelper<uint8_t>::dequantize(a11, iq_info);
*reinterpret_cast<uint8_t *>(out.ptr()) = Qasymm8QuantizationHelper<uint8_t>::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
},
in, out);
}
else if(border_mode == BorderMode::REPLICATE)
{
using FloatTagType = typename wrapper::traits::neon_bitvector_tag_t<float, wrapper::traits::BitWidth::W128>;
using Int32TagType = typename wrapper::traits::neon_bitvector_tag_t<int32_t, wrapper::traits::BitWidth::W128>;
const int in_stride_x = src->info()->strides_in_bytes()[1];
const int in_stride_y = src->info()->strides_in_bytes()[2];
const int in_stride_b = src->info()->strides_in_bytes()[3];
const int out_stride_x = dst->info()->strides_in_bytes()[1];
const int out_stride_y = dst->info()->strides_in_bytes()[2];
const int out_stride_b = dst->info()->strides_in_bytes()[3];
const int out_dim_ch = dst->info()->dimension(0);
constexpr int step_cout = 16;
Window window_execution = window;
window_execution.set(Window::DimX, Window::Dimension(0, 1, 1));
Window win_in_out(window);
win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator in(src, win_in_out);
Iterator out(dst, win_in_out);
const int xo_start = window_execution[1].start();
const int xo_end = window_execution[1].end();
const int xo_step = window_execution[1].step();
const int yo_start = window_execution[2].start();
const int yo_end = window_execution[2].end();
const int yo_step = window_execution[2].step();
const int bo_start = window_execution[3].start();
const int bo_end = window_execution[3].end();
const int bo_step = window_execution[3].step();
const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();
const float32x4_t vscale_in = wrapper::vdup_n(iq_info.scale, FloatTagType{});
const int32x4_t voffset_in = wrapper::vdup_n(iq_info.offset, Int32TagType{}); // Offsets will be Int32
const float32x4_t invvscale_o = wrapper::vdup_n(1.f / oq_info.scale, FloatTagType{});
const float32x4_t voffset_o = vdupq_n_f32(oq_info.offset);
const float fp_coord_offset_y = sampling_offset * (scale_y - 1);
const float fp_coord_offset_x = sampling_offset * (scale_x - 1);
for(int bo = bo_start; bo < bo_end; bo += bo_step)
{
const uint8_t *in_ptr = in.ptr() + bo * in_stride_b;
uint8_t *out_ptr = out.ptr() + bo * out_stride_b;
for(int yo = yo_start; yo < yo_end; yo += yo_step)
{
// Floating-point coordinate
const float yi_f = yo * scale_y + fp_coord_offset_y;
// Integer coordinate
const int yi = static_cast<int>(std::floor(yi_f));
// Weight for the y coordinate
const float a1 = (yi_f - static_cast<float>(yi));
const float b1 = (1.f - a1);
const int yi0 = utility::clamp<int>(yi, 0, input_height - 1);
const int yi1 = utility::clamp<int>(yi + 1, 0, input_height - 1);
const uint8_t *in_ptr_yi0 = in_ptr + yi0 * in_stride_y;
const uint8_t *in_ptr_yi1 = in_ptr + yi1 * in_stride_y;
uint8_t *out_ptr_yo = out_ptr + yo * out_stride_y;
for(int xo = xo_start; xo < xo_end; xo += xo_step)
{
// Floating-point coordinate
const float xi_f = xo * scale_x + fp_coord_offset_x;
// Integer coordinate
const int xi = static_cast<int>(std::floor(xi_f));
// Weight for the x coordinate
const float a = (xi_f - static_cast<float>(xi));
const float b = (1.f - a);
const float s00_s = b * b1;
const float s01_s = a * b1;
const float s10_s = b * a1;
const float s11_s = a * a1;
const auto s00 = wrapper::vdup_n(s00_s, FloatTagType{});
const auto s01 = wrapper::vdup_n(s01_s, FloatTagType{});
const auto s10 = wrapper::vdup_n(s10_s, FloatTagType{});
const auto s11 = wrapper::vdup_n(s11_s, FloatTagType{});
const int xi0 = utility::clamp<int>(xi, 0, input_width - 1);
const int xi1 = utility::clamp<int>(xi + 1, 0, input_width - 1);
const auto in_ptr_xi0_yi0 = in_ptr_yi0 + xi0 * in_stride_x;
const auto in_ptr_xi1_yi0 = in_ptr_yi0 + xi1 * in_stride_x;
const auto in_ptr_xi0_yi1 = in_ptr_yi1 + xi0 * in_stride_x;
const auto in_ptr_xi1_yi1 = in_ptr_yi1 + xi1 * in_stride_x;
uint8_t *out_ptr_xo_yo = out_ptr_yo + xo * out_stride_x;
int cout = 0;
for(; cout <= (out_dim_ch - step_cout); cout += step_cout)
{
const auto in00 = wrapper::vloadq(in_ptr_xi0_yi0 + cout * sizeof(uint8_t));
const auto in01 = wrapper::vloadq(in_ptr_xi1_yi0 + cout * sizeof(uint8_t));
const auto in10 = wrapper::vloadq(in_ptr_xi0_yi1 + cout * sizeof(uint8_t));
const auto in11 = wrapper::vloadq(in_ptr_xi1_yi1 + cout * sizeof(uint8_t));
const uint16x8_t in00_low = wrapper::vmovl(wrapper::vgetlow(in00));
const uint16x8_t in00_high = wrapper::vmovl(wrapper::vgethigh(in00));
const auto in00_0 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in00_low))), voffset_in)), vscale_in);
const auto in00_1 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in00_low))), voffset_in)), vscale_in);
const auto in00_2 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in00_high))), voffset_in)), vscale_in);
const auto in00_3 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in00_high))), voffset_in)), vscale_in);
const uint16x8_t in01_low = wrapper::vmovl(wrapper::vgetlow(in01));
const uint16x8_t in01_high = wrapper::vmovl(wrapper::vgethigh(in01));
const auto in01_0 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in01_low))), voffset_in)), vscale_in);
const auto in01_1 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in01_low))), voffset_in)), vscale_in);
const auto in01_2 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in01_high))), voffset_in)), vscale_in);
const auto in01_3 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in01_high))), voffset_in)), vscale_in);
const uint16x8_t in10_low = wrapper::vmovl(wrapper::vgetlow(in10));
const uint16x8_t in10_high = wrapper::vmovl(wrapper::vgethigh(in10));
const auto in10_0 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in10_low))), voffset_in)), vscale_in);
const auto in10_1 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in10_low))), voffset_in)), vscale_in);
const auto in10_2 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in10_high))), voffset_in)), vscale_in);
const auto in10_3 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in10_high))), voffset_in)), vscale_in);
const uint16x8_t in11_low = wrapper::vmovl(wrapper::vgetlow(in11));
const uint16x8_t in11_high = wrapper::vmovl(wrapper::vgethigh(in11));
const auto in11_0 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in11_low))), voffset_in)), vscale_in);
const auto in11_1 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in11_low))), voffset_in)), vscale_in);
const auto in11_2 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in11_high))), voffset_in)), vscale_in);
const auto in11_3 = wrapper::vmul(wrapper::vcvt<float>(wrapper::vsub(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in11_high))), voffset_in)), vscale_in);
auto out_0 = wrapper::vmul(in00_0, s00);
out_0 = wrapper::vmla(out_0, in01_0, s01);
out_0 = wrapper::vmla(out_0, in10_0, s10);
out_0 = wrapper::vmla(out_0, in11_0, s11);
auto out_1 = wrapper::vmul(in00_1, s00);
out_1 = wrapper::vmla(out_1, in01_1, s01);
out_1 = wrapper::vmla(out_1, in10_1, s10);
out_1 = wrapper::vmla(out_1, in11_1, s11);
auto out_2 = wrapper::vmul(in00_2, s00);
out_2 = wrapper::vmla(out_2, in01_2, s01);
out_2 = wrapper::vmla(out_2, in10_2, s10);
out_2 = wrapper::vmla(out_2, in11_2, s11);
auto out_3 = wrapper::vmul(in00_3, s00);
out_3 = wrapper::vmla(out_3, in01_3, s01);
out_3 = wrapper::vmla(out_3, in10_3, s10);
out_3 = wrapper::vmla(out_3, in11_3, s11);
#if defined(__aarch64__) && !defined(BARE_METAL)
const auto out_0_int = wrapper::vcvta<uint32_t>(wrapper::vmla(voffset_o, out_0, invvscale_o));
const auto out_1_int = wrapper::vcvta<uint32_t>(wrapper::vmla(voffset_o, out_1, invvscale_o));
const auto out_2_int = wrapper::vcvta<uint32_t>(wrapper::vmla(voffset_o, out_2, invvscale_o));
const auto out_3_int = wrapper::vcvta<uint32_t>(wrapper::vmla(voffset_o, out_3, invvscale_o));
#else // defined(__aarch64__) && !defined(BARE_METAL)
const auto out_0_int = wrapper::vcvt<uint32_t>(wrapper::vmla(voffset_o, out_0, invvscale_o));
const auto out_1_int = wrapper::vcvt<uint32_t>(wrapper::vmla(voffset_o, out_1, invvscale_o));
const auto out_2_int = wrapper::vcvt<uint32_t>(wrapper::vmla(voffset_o, out_2, invvscale_o));
const auto out_3_int = wrapper::vcvt<uint32_t>(wrapper::vmla(voffset_o, out_3, invvscale_o));
#endif // defined(__aarch64__) && !defined(BARE_METAL)
const auto low_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_0_int), wrapper::vqmovn(out_1_int)));
const auto high_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_2_int), wrapper::vqmovn(out_3_int)));
const auto out = wrapper::vcombine(low_part, high_part);
wrapper::vstore(out_ptr_xo_yo + cout * sizeof(uint8_t), out);
}
for(; cout < out_dim_ch; ++cout)
{
const uint8_t in00 = *(in_ptr_xi0_yi0 + cout * sizeof(uint8_t));
const uint8_t in01 = *(in_ptr_xi1_yi0 + cout * sizeof(uint8_t));
const uint8_t in10 = *(in_ptr_xi0_yi1 + cout * sizeof(uint8_t));
const uint8_t in11 = *(in_ptr_xi1_yi1 + cout * sizeof(uint8_t));
const float in00_f = (static_cast<int32_t>(in00) - iq_info.offset) * iq_info.scale;
const float in01_f = (static_cast<int32_t>(in01) - iq_info.offset) * iq_info.scale;
const float in10_f = (static_cast<int32_t>(in10) - iq_info.offset) * iq_info.scale;
const float in11_f = (static_cast<int32_t>(in11) - iq_info.offset) * iq_info.scale;
float out = in00_f * s00_s;
out += in01_f * s01_s;
out += in10_f * s10_s;
out += in11_f * s11_s;
// Rounding modes of vector and scalar loops should match
#if defined(__aarch64__) && !defined(BARE_METAL)
*(out_ptr_xo_yo + cout * sizeof(uint8_t)) = quantize_qasymm8(out, oq_info);
#else // defined(__aarch64__) && !defined(BARE_METAL)
*(out_ptr_xo_yo + cout * sizeof(uint8_t)) = quantize_qasymm8(out, oq_info, RoundingPolicy::TO_ZERO);
#endif // defined(__aarch64__) && !defined(BARE_METAL)
}
}
}
}
}
else
{
ARM_COMPUTE_ERROR("Not implemented");
}
}
}
namespace cpu
{
void qasymm8_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy,
InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset,
bool align_corners, const Window &window)
{
if(policy == InterpolationPolicy::BILINEAR)
{
if(src->info()->quantization_info() == dst->info()->quantization_info())
{
u8_neon_scale(src, dst, offsets, dx, dy, policy, border_mode, constant_border_value, sampling_offset, align_corners, window);
}
else
{
qasymm8_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window);
}
}
else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR)
{
nearest_neon_scale<uint8_t>(src, dst, offsets, sampling_offset, align_corners, window);
}
}
} // namespace cpu
} // namespace arm_compute