blob: d41b48c2a7e1850197b30992ed56ca3c6d221fdf [file] [log] [blame]
/*
* Copyright (c) 2017-2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers_cs.h"
#if defined(DATA_TYPE_FP16)
precision mediump float;
#endif // DATA_TYPE_FP16
#if defined(DATA_TYPE_FP32)
#ifdef GEMM_TRANSPOSE1xW
/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main(void)
{
/* Compute address for Matrix B - source */
ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y);
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, b0);
}
#endif /* GEMM_TRANSPOSE1xW */
#ifdef GEMM_INTERLEAVE4x4
/** This OpenGLES kernel reshapes the input matrix interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main(void)
{
/* Compute source and destination addresses */
ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int i;
int j;
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++j)
{
float res = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, j));
STORE(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, (i * 4 + j)), res);
}
}
}
#endif /* GEMM_INTERLEAVE4x4 */
#ifdef GEMM_ACCUMULATE_BIASES
/** This kernel accumulates each row with the biases vector
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
* @param[in] accum_attrs The attributes of the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_attrs The attributes of the biases tensor
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes accum_attrs;
VectorAttributes biases_attrs;
};
TENSOR_DECLARATION(1, accumBuffer, float, accum_ptr, accum_shift, 2, restrict);
TENSOR_DECLARATION(2, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly);
void main(void)
{
ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
for(int i = 0; i < 16; ++i)
{
float accum_value = LOAD(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i));
float biases_value = LOAD(biases_ptr, TENSOR_OFFSET_ADVANCE(biases_iter, i));
accum_value = biases_value + accum_value;
// Store result in the accummulate buffer
STORE(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i), accum_value);
}
}
#endif /* GEMM_ACCUMULATE_BIASES */
#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */
/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_attrs The attributes of the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src0_attrs;
ImageAttributes src1_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
/* Compute address for matrix A and B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y));
/* Compute end row address for matrix B */
int end_row_mtx_b = int(TENSOR_OFFSET_ADVANCE(src1_iter, COLS_B));
/* Reset accumulators */
vec4 c00 = vec4(0.0f);
vec4 c10 = vec4(0.0f);
vec4 c20 = vec4(0.0f);
vec4 c30 = vec4(0.0f);
// FIXME: loop unrolling really needed for GLES?
for(; int(CURRENT_ITEM_OFFSET(src1_iter)) <= (end_row_mtx_b - 8); TENSOR_ITERATOR_ADVANCE(src0_iter, 8), TENSOR_ITERATOR_ADVANCE(src1_iter, 8))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
/* Load values from matrix A (interleaved) and matrix B (transposed) */
a0 = VLOAD4(vec4, src0_ptr, TENSOR_OFFSET_ADVANCE(src0_iter, 4));
b0 = VLOAD4(vec4, src1_ptr, TENSOR_OFFSET_ADVANCE(src1_iter, 4));
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
}
for(; int(CURRENT_ITEM_OFFSET(src1_iter)) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE(src0_iter, 4), TENSOR_ITERATOR_ADVANCE(src1_iter, 4))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
}
/* Multiply by the weight of matrix product */
c00 = c00 * vec4(ALPHA);
c10 = c10 * vec4(ALPHA);
c20 = c20 * vec4(ALPHA);
c30 = c30 * vec4(ALPHA);
/* Store 4x4 block */
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30);
}
#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
#ifdef GEMM_MM_FLOATING_POINT
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_attrs The attributes of the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src0_attrs;
ImageAttributes src1_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4);
/* Compute end row address for matrix A */
int end_row_vec_a = int(TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, COLS_A * 4));
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(CURRENT_ITEM_OFFSET(src0_iter)) <= (end_row_vec_a - 2); TENSOR_ITERATOR_ADVANCE(src0_iter, 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
{
vec2 a0 = VLOAD2_CURRENT_ITEM(vec2, src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
vec4 b1 = VLOAD4(vec4, src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.x);
acc1 += b1 * vec4(a1.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.x);
acc2 += b1 * vec4(a2.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.x);
acc3 += b1 * vec4(a3.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; int(CURRENT_ITEM_OFFSET(src0_iter)) < end_row_vec_a; TENSOR_ITERATOR_ADVANCE(src0_iter, 1), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
{
// Load values from matrix A
float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
//float a1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
acc0 += b0 * vec4(a0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = acc1 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = acc2 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = acc3 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_MM_FLOATING_POINT_BIFROST
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B in case both matrices have not been reshaped
*
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_attrs The attributes of the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src0_attrs;
ImageAttributes src1_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// A and B src indices get incremented at the same time.
int i = 0;
for(; i <= (COLS_A - 4); i += 4)
{
// Load values from matrix A and matrix B
vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 a1 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 a2 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 a3 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
// Multiply and accumulate
acc0 += b0 * vec4(a0.x);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
// Multiply and accumulate
acc0 += b0 * vec4(a0.y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
// Multiply and accumulate
acc0 += b0 * vec4(a0.z);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.z);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.z);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.z);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
// Multiply and accumulate
acc0 += b0 * vec4(a0.w);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.w);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.w);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.w);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
TENSOR_ITERATOR_ADVANCE(src0_iter, 4);
}
for(; i < COLS_A; ++i)
{
// Load values from matrix A
float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
// Multiply and accumulate
acc0 += b0 * vec4(a0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
TENSOR_ITERATOR_ADVANCE(src0_iter, 1);
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = acc1 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = acc2 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = acc3 * vec4(ALPHA);
VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif /* GEMM_MM_FLOATING_POINT_BIFROST */
#ifdef GEMM_MATRIXADDITION
/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value need to be passed at compile time using BETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
void main(void)
{
/* Compute source and destination addresses */
ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
/* Load values from A x B */
vec4 alpha_ab = VLOAD4_CURRENT_ITEM(vec4, dst_ptr, dst_iter);
vec4 c = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
/* Computes alpha * axb + beta * c */
vec4 out1 = alpha_ab + vec4(float(BETA) * c);
/* Store final result in axb matrix */
VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, out1);
}
#endif /* GEMM_MATRIXADDITION */
#elif defined(DATA_TYPE_FP16)
#ifdef GEMM_TRANSPOSE1xW
/** This OpenGL ES kernel computes the "vector" 1x8 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
void main(void)
{
/* Compute address for Matrix B - source */
ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y);
STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter));
}
#endif /* GEMM_TRANSPOSE1xW */
#ifdef GEMM_INTERLEAVE4x4
/** This OpenGLES kernel reshapes the input matrix interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly);
TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
void main(void)
{
/* Compute source and destination addresses */
ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
vec4 s0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter);
vec4 s1[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 1));
vec4 s2[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 2));
vec4 s3[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 3));
vec4 s[2];
s[0] = vec4(s0[0].x, s1[0].x, s2[0].x, s3[0].x);
s[1] = vec4(s0[0].y, s1[0].y, s2[0].y, s3[0].y);
STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
s[0] = vec4(s0[0].z, s1[0].z, s2[0].z, s3[0].z);
s[1] = vec4(s0[0].w, s1[0].w, s2[0].w, s3[0].w);
STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 1u), s);
s[0] = vec4(s0[1].x, s1[1].x, s2[1].x, s3[1].x);
s[1] = vec4(s0[1].y, s1[1].y, s2[1].y, s3[1].y);
STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 2u), s);
s[0] = vec4(s0[1].z, s1[1].z, s2[1].z, s3[1].z);
s[1] = vec4(s0[1].w, s1[1].w, s2[1].w, s3[1].w);
STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 3u), s);
}
#endif /* GEMM_INTERLEAVE4x4 */
#ifdef GEMM_MM_FLOATING_POINT
/** This OpenGL ES kernel computes the matrix multiplication between matrix A(src0) and matrix B(src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix.Supported data types: F16
* @param[in] src0_attrs The attributes of the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src0_attrs;
ImageAttributes src1_attrs;
ImageAttributes dst_attrs;
};
#if defined(MM_PROCESS_4X)
TENSOR_DECLARATION(1, src0Buffer, uint, src0_ptr, src0_shift, 2, readonly);
TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(4));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
{
vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
vec4 b1 = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.x);
acc1 += b1 * vec4(a1.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.x);
acc2 += b1 * vec4(a2.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.x);
acc3 += b1 * vec4(a3.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
{
vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
acc0 += b0 * (a0.x);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * (a1.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * (a2.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * (a3.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b;
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b * vec4(a1[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b * vec4(a2[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b * vec4(a3[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
}
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b;
int leftover = COLS_A % 8;
for(int i = 0; i < leftover; i++)
{
int j = i >> 2;
int k = i % 4;
b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b * vec4(a1[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b * vec4(a2[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b * vec4(a3[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#elif defined(MM_PROCESS_8X) /* PROCESS_8X */
TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly);
TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc[2];
acc[0] = vec4(0.0f);
acc[1] = vec4(0.0f);
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
vec4 b[2];
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
}
}
for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a);
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * uint(2)), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
vec4 b[2];
int leftover = COLS_A % 8;
for(int i = 0; i < leftover; i++)
{
int j = i >> 2;
int k = i % 4;
b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
}
}
/* Multiply by the weight of vector-matrix product */
acc[0] = acc[0] * vec4(ALPHA);
acc[1] = acc[1] * vec4(ALPHA);
STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc);
}
#endif /* PROCESS_8X */
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_ACCUMULATE_BIASES
#if defined(ACCUM_PROCESS_4X)
/** This kernel accumulates each row with the biases vector
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
* @param[in] accum_attrs The attributes of the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_attrs The attributes of the biases tensor
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes accum_attrs;
VectorAttributes biases_attrs;
};
TENSOR_DECLARATION(1, accumBuffer, uvec2, accum_ptr, accum_shift, 3, restrict);
TENSOR_DECLARATION(2, biasesBuffer, uvec2, biases_ptr, biases_shift, 3, readonly);
void main(void)
{
ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
vec4 u[2];
u[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
u[1] = LOAD_UNPACK4_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
vec4 tmp;
tmp = u[0] + u[1];
STORE_PACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter, tmp);
}
#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_8X */
SHADER_PARAMS_DECLARATION
{
ImageAttributes accum_attrs;
VectorAttributes biases_attrs;
};
TENSOR_DECLARATION(1, accumBuffer, uvec4, accum_ptr, accum_shift, 4, restrict);
TENSOR_DECLARATION(2, biasesBuffer, uvec4, biases_ptr, biases_shift, 4, readonly);
void main(void)
{
ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
vec4 u[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
vec4 v[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
vec4 r[2];
r[0] = u[0] + v[0];
r[1] = u[1] + v[1];
STORE_PACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter, r);
}
#endif /* ACCUM_PROCESS_8X */
#endif /* GEMM_ACCUMULATE_BIASES */
#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED
/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_attrs The attributes of the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_attrs The attributes of the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_attrs The attributes of the destination matrix
*/
SHADER_PARAMS_DECLARATION
{
ImageAttributes src0_attrs;
ImageAttributes src1_attrs;
ImageAttributes dst_attrs;
};
TENSOR_DECLARATION(1, src0Buffer, uvec2, src0_ptr, src0_shift, 3, readonly);
TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly);
TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
void main()
{
ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
/* Compute address for matrix A and B */
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y));
TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y));
/* Compute end row address for matrix B */
int end_row_mtx_b = (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) + int(COLS_B);
/* Reset accumulators */
vec4 c00[2];
vec4 c10[2];
vec4 c20[2];
vec4 c30[2];
c00[0] = vec4(0.0f);
c00[1] = vec4(0.0f);
c10[0] = vec4(0.0f);
c10[1] = vec4(0.0f);
c20[0] = vec4(0.0f);
c20[1] = vec4(0.0f);
c30[0] = vec4(0.0f);
c30[1] = vec4(0.0f);
// FIXME: loop unrolling really needed for GLES?
for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) <= (end_row_mtx_b - 16); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 16), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 32))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
c00[0] += vec4(a0.x) * b0[0];
c00[1] += vec4(a0.x) * b0[1];
c10[0] += vec4(a0.y) * b0[0];
c10[1] += vec4(a0.y) * b0[1];
c20[0] += vec4(a0.z) * b0[0];
c20[1] += vec4(a0.z) * b0[1];
c30[0] += vec4(a0.w) * b0[0];
c30[1] += vec4(a0.w) * b0[1];
/* Load values from matrix A (interleaved) and matrix B (transposed) */
a0 = LOAD_UNPACK4_HALF(src0_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, 8));
b0 = LOAD_UNPACK8_HALF(src1_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src1_iter, 16));
c00[0] += vec4(a0.x) * b0[0];
c00[1] += vec4(a0.x) * b0[1];
c10[0] += vec4(a0.y) * b0[0];
c10[1] += vec4(a0.y) * b0[1];
c20[0] += vec4(a0.z) * b0[0];
c20[1] += vec4(a0.z) * b0[1];
c30[0] += vec4(a0.w) * b0[0];
c30[1] += vec4(a0.w) * b0[1];
}
for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 16))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
c00[0] += vec4(a0.x) * b0[0];
c00[1] += vec4(a0.x) * b0[1];
c10[0] += vec4(a0.y) * b0[0];
c10[1] += vec4(a0.y) * b0[1];
c20[0] += vec4(a0.z) * b0[0];
c20[1] += vec4(a0.z) * b0[1];
c30[0] += vec4(a0.w) * b0[0];
c30[1] += vec4(a0.w) * b0[1];
}
/* Multiply by the weight of matrix product */
c00[0] = c00[0] * vec4(ALPHA);
c00[1] = c00[1] * vec4(ALPHA);
c10[0] = c10[0] * vec4(ALPHA);
c10[1] = c10[1] * vec4(ALPHA);
c20[0] = c20[0] * vec4(ALPHA);
c20[1] = c20[1] * vec4(ALPHA);
c30[0] = c30[0] * vec4(ALPHA);
c30[1] = c30[1] * vec4(ALPHA);
/* Store 4x8 block */
STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00);
STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10);
STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20);
STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30);
}
#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
#else /* DATA_TYPE_FP16 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */