Port NEGEMMLowp Part 2

Details:
Extend NEConvertQuantizedSignednessKernel
Port NEGEMMInterleave4x4Kernel to CpuGemmInterleave4x4Kernel
Port NEGEMMTranspose1xWKernel to CpuGemmTranspose1xWKernel
Port NEGEMMLowpMatrixAReductionKernel to CpuGemmLowpMatrixAReductionKernel
Port NEGEMMLowpMatrixBReductionKernel to CpuGemmLowpMatrixBReductionKernel
Port NEGEMMLowpOffsetContributionOutputStageKernel to CpuGemmLowpOffsetContributionOutputStageKernel
Port NEGEMMLowpOffsetContributionKernel to CpuGemmLowpOffsetContributionKernel

Resolves: COMPMID-4403

Change-Id: I3227f052f25e7b41d073bbea1da8a881fcd78b8e
Signed-off-by: Manuel Bottini <manuel.bottini@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5875
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
diff --git a/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.cpp b/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.cpp
new file mode 100644
index 0000000..26cbb48
--- /dev/null
+++ b/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.cpp
@@ -0,0 +1,142 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+
+    // Validate output if initialized
+    if(dst->total_size() != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(src->tensor_shape(), dst->tensor_shape());
+    }
+
+    return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src, ITensorInfo *dst)
+{
+    // Output auto inizialitation if not yet initialized
+    {
+        const bool                    is_input_signed   = src->data_type() == DataType::QASYMM8_SIGNED;
+        const DataType                dt                = is_input_signed ? DataType::QASYMM8 : DataType::QASYMM8_SIGNED;
+        const UniformQuantizationInfo qinfo             = src->quantization_info().uniform();
+        const int                     offset_correction = is_input_signed ? -128 : 128;
+        const QuantizationInfo        corrected_qinfo   = QuantizationInfo(qinfo.scale, qinfo.offset + offset_correction);
+
+        auto_init_if_empty(*dst, src->clone()->set_data_type(dt).set_quantization_info(corrected_qinfo));
+    }
+
+    return std::make_pair(Status{}, calculate_max_window(*dst));
+}
+} // namespace
+
+void CpuConvertQuantizedSignednessKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst));
+
+    std::pair<Status, Window> win_config = validate_and_configure_window(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+    ICpuKernel::configure(win_config.second);
+}
+
+Status CpuConvertQuantizedSignednessKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst));
+    return Status{};
+}
+
+void CpuConvertQuantizedSignednessKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+    auto dst = tensors.get_tensor(TensorType::ACL_DST);
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
+    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Iterator input(src, win_collapsed);
+    Iterator output(dst, win_collapsed);
+
+    const int  window_step_x  = 16;
+    const auto window_start_x = static_cast<int>(window.x().start());
+    const auto window_end_x   = static_cast<int>(window.x().end());
+
+    const uint8_t mask  = 128;
+    const auto    vmask = wrapper::vdup_n(mask, wrapper::traits::vector_128_tag{});
+
+    execute_window_loop(win_collapsed, [&](const Coordinates &)
+    {
+        const auto input_ptr  = reinterpret_cast<const uint8_t *>(input.ptr());
+        const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
+
+        // Compute S elements per iteration
+        int x = window_start_x;
+        for(; x <= (window_end_x - window_step_x); x += window_step_x)
+        {
+            const auto vin = wrapper::vloadq(input_ptr + x);
+            wrapper::vstore(output_ptr + x, wrapper::veor(vin, vmask));
+        }
+
+        // Compute left-over elements
+        for(; x < window_end_x; ++x)
+        {
+            const uint8_t in  = *(reinterpret_cast<const uint8_t *>(input_ptr + x));
+            *(output_ptr + x) = in ^ mask;
+        }
+    },
+    input, output);
+}
+
+const char *CpuConvertQuantizedSignednessKernel::name() const
+{
+    return "CpuConvertQuantizedSignednessKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.h b/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.h
new file mode 100644
index 0000000..2a8f6c3
--- /dev/null
+++ b/src/core/cpu/kernels/CpuConvertQuantizedSignednessKernel.h
@@ -0,0 +1,63 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_CONVERTQUANTIZEDSIGNEDNESS_KERNEL_H
+#define ARM_COMPUTE_CPU_CONVERTQUANTIZEDSIGNEDNESS_KERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Kernel to convert asymmetric signed to asymmetric signed and vice-versa */
+class CpuConvertQuantizedSignednessKernel : public ICpuKernel
+{
+public:
+    CpuConvertQuantizedSignednessKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuConvertQuantizedSignednessKernel);
+    /** Initialize the kernel input and output info.
+     *
+     * @param[in]  src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED.
+     * @param[out] dst Destination tensor info. Data types supported: opposite of @p src.
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuConvertQuantizedSignednessKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /*ARM_COMPUTE_CPU_CONVERTQUANTIZEDSIGNEDNESS_KERNEL_H */
diff --git a/src/core/cpu/kernels/CpuGemmInterleave4x4Kernel.h b/src/core/cpu/kernels/CpuGemmInterleave4x4Kernel.h
index 8f1a543..0c55886 100644
--- a/src/core/cpu/kernels/CpuGemmInterleave4x4Kernel.h
+++ b/src/core/cpu/kernels/CpuGemmInterleave4x4Kernel.h
@@ -56,7 +56,6 @@
 {
 public:
     CpuGemmInterleave4x4Kernel() = default;
-    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmInterleave4x4Kernel);
     /** Initialise the kernel's src and dst.
      *
      * @param[in]  src Input tensor info. Data types supported: All
diff --git a/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
new file mode 100644
index 0000000..35e542f
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
@@ -0,0 +1,1053 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+void inline vector_matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
+{
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        if(id.x() > width_b)
+        {
+            return;
+        }
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        uint32x4x4_t c0 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        auto vec_a          = reinterpret_cast<const uint8_t *>(ina.ptr());
+        auto matrix_b       = reinterpret_cast<const uint8_t *>(inb.ptr());
+        auto vec_a_end_addr = vec_a + width_a;
+
+        // This for loop performs 8 accumulations
+        for(; vec_a <= (vec_a_end_addr - 8);)
+        {
+            const uint8x8_t  a00_u8 = vld1_u8(vec_a);
+            const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b);
+            const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b);
+            const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b);
+            const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b);
+            const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b);
+            const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b);
+            const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b);
+            const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b);
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4x2_t a00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(a00_u8)),
+                    vget_high_u16(vmovl_u8(a00_u8))
+                }
+            };
+
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            const uint16x4x4_t b10_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b10_u8)))
+                }
+            };
+
+            const uint16x4x4_t b20_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b20_u8)))
+                }
+            };
+
+            const uint16x4x4_t b30_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b30_u8)))
+                }
+            };
+
+            const uint16x4x4_t b40_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b40_u8)))
+                }
+            };
+
+            const uint16x4x4_t b50_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b50_u8)))
+                }
+            };
+
+            const uint16x4x4_t b60_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b60_u8)))
+                }
+            };
+
+            const uint16x4x4_t b70_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b70_u8)))
+                }
+            };
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0);
+
+            // Accumulate 1:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1);
+
+            // Accumulate 2:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2);
+
+            // Accumulate 3:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3);
+
+            // Accumulate 4:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0);
+
+            // Accumulate 5:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1);
+
+            // Accumulate 6:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2);
+
+            // Accumulate 7:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3);
+
+            vec_a += 8;
+            matrix_b += 8 * stride_b;
+        }
+
+        // This for loop performs the left-over accumulations
+        for(; vec_a < vec_a_end_addr;)
+        {
+            const uint8x8_t  a00_u8 = vld1_dup_u8(vec_a);
+            const uint8x16_t b00_u8 = vld1q_u8(matrix_b);
+
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+            vec_a += 1;
+            matrix_b += stride_b;
+        }
+
+        auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.x() < (width_out - 16))
+        {
+            vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0]));
+            vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1]));
+            vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2]));
+            vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3]));
+        }
+        else
+        {
+            auto left_over = width_out - id.x();
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(vec_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline vector_matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
+{
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        if(id.x() > width_b)
+        {
+            return;
+        }
+
+        // Accumulators for the block 0
+        int32x4x4_t c0 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        auto vec_a          = reinterpret_cast<const int8_t *>(ina.ptr());
+        auto matrix_b       = reinterpret_cast<const int8_t *>(inb.ptr());
+        auto vec_a_end_addr = vec_a + width_a;
+
+        // This for loop performs 8 accumulations
+        for(; vec_a <= (vec_a_end_addr - 8);)
+        {
+            const int8x8_t  a00_s8 = vld1_s8(vec_a);
+            const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b);
+            const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b);
+            const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b);
+            const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b);
+            const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b);
+            const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b);
+            const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b);
+            const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b);
+
+            // Convert a00_s8 to int16_t and get the lower part
+            const int16x4x2_t a00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(a00_s8)),
+                    vget_high_s16(vmovl_s8(a00_s8))
+                }
+            };
+
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            const int16x4x4_t b10_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b10_s8)))
+                }
+            };
+
+            const int16x4x4_t b20_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b20_s8)))
+                }
+            };
+
+            const int16x4x4_t b30_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b30_s8)))
+                }
+            };
+
+            const int16x4x4_t b40_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b40_s8)))
+                }
+            };
+
+            const int16x4x4_t b50_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b50_s8)))
+                }
+            };
+
+            const int16x4x4_t b60_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b60_s8)))
+                }
+            };
+
+            const int16x4x4_t b70_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b70_s8)))
+                }
+            };
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0);
+
+            // Accumulate 1:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1);
+
+            // Accumulate 2:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2);
+
+            // Accumulate 3:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3);
+
+            // Accumulate 4:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0);
+
+            // Accumulate 5:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1);
+
+            // Accumulate 6:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2);
+
+            // Accumulate 7:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3);
+
+            vec_a += 8;
+            matrix_b += 8 * stride_b;
+        }
+
+        // This for loop performs the left-over accumulations
+        for(; vec_a < vec_a_end_addr;)
+        {
+            const int8x8_t  a00_s8 = vld1_dup_s8(vec_a);
+            const int8x16_t b00_s8 = vld1q_s8(matrix_b);
+
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            // Convert a00_s8 to uint16_t and get the lower part
+            const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+            vec_a += 1;
+            matrix_b += stride_b;
+        }
+
+        auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.x() < (width_out - 16))
+        {
+            vst1q_s32(vec_out + 0, c0.val[0]);
+            vst1q_s32(vec_out + 4, c0.val[1]);
+            vst1q_s32(vec_out + 8, c0.val[2]);
+            vst1q_s32(vec_out + 12, c0.val[3]);
+        }
+        else
+        {
+            auto left_over = width_out - id.x();
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(vec_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+    const auto   width_out  = static_cast<int>(out_info.dimension(0));
+    const auto   height_out = static_cast<int>(out_info.dimension(1));
+    const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        const uint8_t *mtx_a0 = ina.ptr();
+        const uint8_t *mtx_b0 = inb.ptr();
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        uint32x4x4_t c0 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 1
+        uint32x4x4_t c1 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 2
+        uint32x4x4_t c2 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 3
+        uint32x4x4_t c3 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+        {
+            const uint8x8_t  a00_u8 = vld1_u8(mtx_a0);
+            const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+            // Convert b00_s8 to uint16_t
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            // 4x4 block 0
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+            // 4x4 block 1
+            c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
+            c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
+            c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
+            c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
+
+            // 4x4 block 2
+            c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
+            c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
+            c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
+            c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
+
+            // 4x4 block 3
+            c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
+            c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
+            c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
+            c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
+        }
+
+        auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+
+        if(id.y() < height_out && id.x() < (width_out - 16))
+        {
+            vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
+            vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
+            vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
+            vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
+            if(id.y() + 1 < height_out)
+            {
+                vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
+                vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
+                vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
+                vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
+                if(id.y() + 2 < height_out)
+                {
+                    vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
+                    if(id.y() + 3 < height_out)
+                    {
+                        vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
+                    }
+                }
+            }
+        }
+        else
+        {
+            const auto left_over_value = width_out - id.x();
+            auto       left_over       = left_over_value;
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(mtx_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+            if(id.y() + 1 < height_out)
+            {
+                left_over = left_over_value;
+                for(auto k = 0; k < 4 && left_over; ++k)
+                {
+                    for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                    {
+                        *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+                    }
+                }
+                if(id.y() + 2 < height_out)
+                {
+                    left_over = left_over_value;
+                    for(auto k = 0; k < 4 && left_over; ++k)
+                    {
+                        for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                        {
+                            *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+                        }
+                    }
+                    if(id.y() + 3 < height_out)
+                    {
+                        left_over = left_over_value;
+                        for(auto k = 0; k < 4 && left_over; ++k)
+                        {
+                            for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                            {
+                                *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+                            }
+                        }
+                    }
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+    const auto   width_out  = static_cast<int>(out_info.dimension(0));
+    const auto   height_out = static_cast<int>(out_info.dimension(1));
+    const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+    // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW
+    // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
+    // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
+        auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        int32x4x4_t c0 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 1
+        int32x4x4_t c1 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 2
+        int32x4x4_t c2 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 3
+        int32x4x4_t c3 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+        {
+            const int8x8_t  a00_s8 = vld1_s8(mtx_a0);
+            const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
+
+            // Convert a00_s8 to uint16_t and get the lower part
+            const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+            // Convert b00_s8 to int16_t
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            // 4x4 block 0
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+            // 4x4 block 1
+            c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
+            c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
+            c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
+            c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
+
+            // 4x4 block 2
+            c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
+            c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
+            c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
+            c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
+
+            // 4x4 block 3
+            c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
+            c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
+            c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
+            c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
+        }
+        auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.y() < height_out && id.x() < (width_out - 16))
+        {
+            vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
+            vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
+            vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
+            vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
+            if(id.y() + 1 < height_out)
+            {
+                vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
+                vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
+                vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
+                vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
+                if(id.y() + 2 < height_out)
+                {
+                    vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
+                    if(id.y() + 3 < height_out)
+                    {
+                        vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
+                    }
+                }
+            }
+        }
+        else if(id.y() < height_out)
+        {
+            const auto left_over_value = width_out - id.x();
+            auto       left_over       = left_over_value;
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(mtx_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+            if(id.y() + 1 < height_out)
+            {
+                left_over = left_over_value;
+                for(auto k = 0; k < 4 && left_over; ++k)
+                {
+                    for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                    {
+                        *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+                    }
+                }
+                if(id.y() + 2 < height_out)
+                {
+                    left_over = left_over_value;
+                    for(auto k = 0; k < 4 && left_over; ++k)
+                    {
+                        for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                        {
+                            *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+                        }
+                    }
+                    if(id.y() + 3 < height_out)
+                    {
+                        left_over = left_over_value;
+                        for(auto k = 0; k < 4 && left_over; ++k)
+                        {
+                            for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                            {
+                                *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+                            }
+                        }
+                    }
+                }
+            }
+        }
+
+    },
+    ina, inb, out);
+}
+
+Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8, DataType::U8);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
+
+    TensorShape in0_shape = src0->tensor_shape();
+    TensorShape in1_shape = src1->tensor_shape();
+    TensorShape out_shape = dst->tensor_shape();
+
+    // Check vector-by-matrix case
+    if(out_shape[1] == 1)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1], "The number of input0's columns must be equal to input1's rows");
+    }
+    else
+    {
+        in0_shape.collapse(2);
+        in1_shape.collapse(2);
+        out_shape.collapse(2);
+
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor");
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16");
+    }
+
+    return Status{};
+}
+} // namespace
+
+void CpuGemmLowpMatrixMultiplyKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
+{
+    ARM_COMPUTE_UNUSED(src0);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst));
+
+    TensorShape in1_shape = src1->tensor_shape();
+    in1_shape.collapse(2);
+
+    _slide_matrix_b = in1_shape[2] != 1;
+
+    constexpr unsigned int num_elems_processed_per_iteration_x = 16;
+    constexpr unsigned int num_elems_processed_per_iteration_y = 4;
+
+    Window win;
+    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
+    if((dst->dimension(1) == 1))
+    {
+        // Configure kernel window
+        win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x));
+    }
+    else
+    {
+        win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+    }
+
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpMatrixMultiplyKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst));
+    return Status{};
+}
+
+void CpuGemmLowpMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+    auto dst  = tensors.get_tensor(TensorType::ACL_DST);
+
+    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path
+    if((dst->info()->dimension(1) == 1))
+    {
+        const auto width_matrix_a = static_cast<int>(src0->info()->dimension(0));
+        const auto width_matrix_b = static_cast<int>(src1->info()->dimension(0));
+        const auto width_out      = static_cast<int>(dst->info()->dimension(0));
+        const auto in_b_stride    = static_cast<int>(src1->info()->strides_in_bytes()[1] / data_size_from_type(src1->info()->data_type()));
+
+        // The implementation computes 16 elements per iteration
+        const int window_start_x = 16 * info.thread_id;
+        const int window_step_x  = 16 * info.num_threads;
+        // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
+        const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
+
+        Window win_out(window);
+        win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+        win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+        Window win_a(window);
+        win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+        Window win_b;
+        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        if(src1->info()->num_dimensions() >= 3)
+        {
+            win_b = window;
+        }
+        win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+        win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+        Iterator ina(src0, win_a);
+        Iterator inb(src1, win_b);
+        Iterator out(dst, win_out);
+
+        switch(src0->info()->data_type())
+        {
+            case DataType::S8:
+            case DataType::QASYMM8_SIGNED:
+            {
+                vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
+                break;
+            }
+            case DataType::U8:
+            case DataType::QASYMM8:
+            {
+                vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
+                break;
+            }
+            default:
+            {
+                ARM_COMPUTE_ERROR("Not supported");
+                break;
+            }
+        }
+    }
+    else
+    {
+        const size_t in_b_stride = src1->info()->strides_in_bytes()[1];
+        const int    width_b     = src1->info()->dimension(0);
+
+        // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
+        Window win_a(window);
+        win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
+
+        // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
+        Window win_b;
+        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        if(_slide_matrix_b)
+        {
+            win_b = window;
+        }
+        win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
+        win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+        // The step x and step y for the output matrix has been already set using in configure()
+        Iterator ina(src0, win_a);
+        Iterator inb(src1, win_b);
+        Iterator out(dst, window);
+
+        switch(src0->info()->data_type())
+        {
+            case DataType::S8:
+            case DataType::QASYMM8_SIGNED:
+            {
+                matrix_multiply_s8(ina, inb, out, width_b, *dst->info(), window);
+                break;
+            }
+            case DataType::U8:
+            case DataType::QASYMM8:
+            {
+                matrix_multiply_u8(ina, inb, out, width_b, *dst->info(), window);
+                break;
+            }
+            default:
+            {
+                ARM_COMPUTE_ERROR("Not supported");
+                break;
+            }
+        }
+    }
+}
+
+const char *CpuGemmLowpMatrixMultiplyKernel::name() const
+{
+    return "CpuGemmLowpMatrixMultiplyKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
\ No newline at end of file
diff --git a/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h
new file mode 100644
index 0000000..77d8741
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h
@@ -0,0 +1,80 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_GEMMLOWP_MATRIXMULTIPLY_KERNEL_H
+#define ARM_COMPUTE_CPU_GEMMLOWP_MATRIXMULTIPLY_KERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Kernel to multiply matrices
+ *
+ * @note @ref CpuGemmLowpMatrixMultiplyKernel low precision matrix product kernel
+ *  This kernel performs the following computation:
+ *
+ *  -# Convert a values from int8 to int32
+ *  -# Convert b values from int8 to int32
+ *  -# Compute the int32 matrix product of the resulting a * b and store the result as int32
+ *
+ */
+class CpuGemmLowpMatrixMultiplyKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuGemmLowpMatrixMultiplyKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmLowpMatrixMultiplyKernel);
+    /** Initialise the kernel's input and output.
+     *
+     * The input matrices @p src0 and @p src1 must be the output of the kernels: @ref CpuGemmInterleave4x4Kernel and @ref CpuGemmTranspose1xWKernel. These two
+     * kernels change the layout of the original matrices to be more cache-friendly.
+     *
+     * @param[in]  src0 Input tensor info containing the interleaved Matrix A. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED
+     * @param[in]  src1 Input tensor info containing the transposed1xW Matrix B. Data type supported: U8/QASYMM8/S8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
+     * @param[out] dst  Output tensor info to store the result of matrix multiplication. Data type supported: S32
+     */
+    void configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuGemmLowpMatrixMultiplyKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    bool _slide_matrix_b{ true };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /*ARM_COMPUTE_CPU_GEMMLOWP_MATRIXMULTIPLY_KERNEL_H*/
diff --git a/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.cpp b/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.cpp
new file mode 100644
index 0000000..270abc8
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.cpp
@@ -0,0 +1,396 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h"
+
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/KernelDescriptors.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+Status validate_arguments_matrix_a_reduction(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_ON_MSG(info.is_reshaped == true, "Not supported");
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
+
+    if(dst->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(dst->dimension(0) != src->dimension(1), "Output vector must have length equal to the number of rows of the input matrix");
+    }
+    return Status{};
+}
+Status validate_arguments_matrix_b_reduction(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_ON_MSG(info.is_reshaped == true, "Not supported");
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
+
+    if(dst->total_size() > 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(dst->dimension(0) != src->dimension(0), "Output vector must have length equal to the number of columns of the input matrix");
+    }
+    return Status{};
+}
+} // namespace
+
+void CpuGemmLowpMatrixAReductionKernel::configure(const ITensorInfo *src, ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    // Perform validate step
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_a_reduction(src, dst, info));
+    _k             = info.k;
+    _scalar        = info.scalar;
+    _mul_by_scalar = info.mul_by_scalar;
+
+    switch(src->data_type())
+    {
+        case DataType::QASYMM8:
+            _func = &CpuGemmLowpMatrixAReductionKernel::run_internal<uint8_t>;
+            break;
+        case DataType::QASYMM8_SIGNED:
+        case DataType::QSYMM8:
+        case DataType::QSYMM8_PER_CHANNEL:
+            _func = &CpuGemmLowpMatrixAReductionKernel::run_internal<int8_t>;
+            break;
+        default:
+            ARM_COMPUTE_ERROR("Unsupported data type");
+    }
+
+    // Output auto initialization if not yet initialized
+    auto_init_if_empty(*dst, TensorShape(src->dimension(1)), 1, DataType::S32);
+
+    Window win = calculate_max_window(*dst, Steps(1));
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpMatrixAReductionKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_a_reduction(src, dst, info));
+    return Status{};
+}
+
+template <typename T>
+void CpuGemmLowpMatrixAReductionKernel::run_internal(const ITensor *src, ITensor *dst, const arm_compute::Window &window)
+{
+    // Intermediate and final accumulator types
+    using TIAcc = wrapper::traits::promote_t<T>;
+    using TAcc  = wrapper::traits::promote_t<TIAcc>;
+
+    Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
+
+    Window win_input(collapsed_window);
+    win_input.set(Window::DimX, Window::Dimension(0, 0, 0));
+    win_input.set(Window::DimY, Window::Dimension(0, 0, 0));
+    win_input.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+    Iterator in(src, win_input);
+    Iterator out(dst, collapsed_window);
+
+    execute_window_loop(collapsed_window, [&](const Coordinates & id)
+    {
+        auto vsum_row = wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{});
+        TAcc sum_row  = 0;
+
+        const T *matrix_a = reinterpret_cast<const T *>((in.ptr() + id.x() * src->info()->strides_in_bytes()[1] + id.y() * src->info()->strides_in_bytes()[2]));
+
+#if __arm__
+        asm volatile("PLD [%0, #128*4]" ::"r"(matrix_a));
+#endif /* __arm__ */
+
+        int i = 0;
+        // This for loop performs 16 accumulations
+        for(; i <= (_k - 16); i += 16)
+        {
+            const auto a0_d8 = wrapper::vloadq(matrix_a + i);
+
+            // Partial accumulations in U16
+            const auto tmp_sum0 = wrapper::vaddl(wrapper::vgetlow(a0_d8), wrapper::vgethigh(a0_d8));
+
+            // Accumulate to U32
+            vsum_row = wrapper::vadd(vsum_row, wrapper::vpaddl(tmp_sum0));
+        }
+
+        // This for loop performs the leftover accumulations
+        for(; i < _k; ++i)
+        {
+            sum_row += static_cast<TAcc>(matrix_a[i]);
+        }
+
+#if defined(__aarch64__)
+        // Reduction operation available on 64 bit architectures only
+        sum_row += wrapper::vaddv(vsum_row);
+#else  // __aarch64__
+        auto tmp = wrapper::vpadd(wrapper::vgethigh(vsum_row), wrapper::vgetlow(vsum_row));
+        tmp      = wrapper::vpadd(tmp, tmp);
+
+        sum_row += wrapper::vgetlane(tmp, 0);
+#endif // __aarch64__
+
+        // Multiply by scalar if necessary
+        if(_mul_by_scalar)
+        {
+            sum_row *= _scalar;
+        }
+
+        *(reinterpret_cast<int *>(out.ptr())) = static_cast<int32_t>(sum_row);
+    },
+    in, out);
+}
+
+void CpuGemmLowpMatrixAReductionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+    auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+    (this->*_func)(src, dst, window);
+}
+
+const char *CpuGemmLowpMatrixAReductionKernel::name() const
+{
+    return "CpuGemmLowpMatrixAReductionKernel";
+}
+
+void CpuGemmLowpMatrixBReductionKernel::configure(const ITensorInfo *src, ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_b_reduction(src, dst, info));
+
+    _k             = info.k;
+    _scalar        = info.scalar;
+    _mul_by_scalar = info.mul_by_scalar;
+
+    // Configure kernel window
+    constexpr unsigned int num_elems_processed_per_iteration = 16;
+
+    switch(src->data_type())
+    {
+        case DataType::QASYMM8:
+            _func = &CpuGemmLowpMatrixBReductionKernel::run_internal<uint8_t>;
+            break;
+        case DataType::QASYMM8_SIGNED:
+        case DataType::QSYMM8:
+        case DataType::QSYMM8_PER_CHANNEL:
+            _func = &CpuGemmLowpMatrixBReductionKernel::run_internal<int8_t>;
+            break;
+        default:
+            ARM_COMPUTE_ERROR("Unsupported data type");
+    }
+
+    // Output auto initialization if not yet initialized
+    auto_init_if_empty(*dst, TensorShape(src->dimension(0)), 1, DataType::S32);
+
+    // Configure kernel window
+    Window win = calculate_max_window_horizontal(*dst, Steps(num_elems_processed_per_iteration));
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpMatrixBReductionKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_b_reduction(src, dst, info));
+    return Status{};
+}
+
+template <typename T>
+void CpuGemmLowpMatrixBReductionKernel::run_internal(const ITensor *src, ITensor *dst, const Window &window, const ThreadInfo &info)
+{
+    // Intermediate and final accumulator types
+    using TIAcc = wrapper::traits::promote_t<T>;
+    using TAcc  = wrapper::traits::promote_t<TIAcc>;
+
+    Window     collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
+    const auto vec_scalar       = wrapper::vdup_n(static_cast<TAcc>(_scalar), wrapper::traits::vector_128_tag{});
+
+    const auto width_matrix_b = static_cast<int>(src->info()->dimension(0));
+    const auto in_b_stride    = static_cast<int>(src->info()->strides_in_bytes()[1]);
+
+    // The implementation computes 16 elements per iteration
+    const int window_start_x = 16 * info.thread_id;
+    const int window_step_x  = 16 * info.num_threads;
+    // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
+    const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
+
+    Window win_out(collapsed_window);
+    win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+
+    Window win_in(win_out);
+    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+    win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+    Iterator inb(src, win_in);
+    Iterator out(dst, win_out);
+
+    execute_window_loop(win_out, [&](const Coordinates & id)
+    {
+        if(id.x() > width_matrix_b)
+        {
+            return;
+        }
+
+        // Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
+        typename wrapper::traits::neon_bitvector<TAcc, wrapper::traits::BitWidth::W128>::type sum_col[4] =
+        {
+            wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
+            wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
+            wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
+            wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{})
+        };
+
+        const auto *matrix_b = reinterpret_cast<const T *>(inb.ptr() + id.y() * src->info()->strides_in_bytes()[2]);
+
+#if __arm__
+        asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b));
+        asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b + in_b_stride));
+#endif /* __arm__ */
+
+        int i = 0;
+        // This for loop performs 4 accumulations
+        for(; i <= (_k - 4); i += 4)
+        {
+            const auto b0_u8 = wrapper::vloadq(matrix_b + 0 * in_b_stride);
+            const auto b1_u8 = wrapper::vloadq(matrix_b + 1 * in_b_stride);
+            const auto b2_u8 = wrapper::vloadq(matrix_b + 2 * in_b_stride);
+            const auto b3_u8 = wrapper::vloadq(matrix_b + 3 * in_b_stride);
+
+#if __arm__
+            asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 1 * in_b_stride));
+            asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 2 * in_b_stride));
+            asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 3 * in_b_stride));
+            asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 4 * in_b_stride));
+#endif /* __arm__ */
+
+            // Partial accumulation in 16bit
+            typename wrapper::traits::neon_bitvector<TIAcc, wrapper::traits::BitWidth::W128>::type tmp_sum[2] =
+            {
+                wrapper::vdup_n(static_cast<TIAcc>(0), wrapper::traits::vector_128_tag{}),
+                wrapper::vdup_n(static_cast<TIAcc>(0), wrapper::traits::vector_128_tag{})
+            };
+
+            tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b1_u8));
+            tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b0_u8));
+            tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b2_u8));
+            tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b3_u8));
+            tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b0_u8));
+            tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b1_u8));
+            tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b2_u8));
+            tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b3_u8));
+
+            // Accumulate to 32bit
+            sum_col[0] = wrapper::vaddw(sum_col[0], wrapper::vgetlow(tmp_sum[0]));
+            sum_col[1] = wrapper::vaddw(sum_col[1], wrapper::vgethigh(tmp_sum[0]));
+            sum_col[2] = wrapper::vaddw(sum_col[2], wrapper::vgetlow(tmp_sum[1]));
+            sum_col[3] = wrapper::vaddw(sum_col[3], wrapper::vgethigh(tmp_sum[1]));
+
+            matrix_b += 4 * in_b_stride;
+        }
+
+        // This for loop perfoms the leftover accumulations
+        for(; i < _k; ++i)
+        {
+            const auto b0_b8 = wrapper::vloadq(matrix_b + 0 * in_b_stride);
+
+            // Convert S8 to S16
+            const typename wrapper::traits::neon_bitvector<TIAcc, wrapper::traits::BitWidth::W128>::type b0_b16[2]
+            {
+                wrapper::vmovl(wrapper::vgetlow(b0_b8)),
+                wrapper::vmovl(wrapper::vgethigh(b0_b8))
+            };
+
+            // Accumulate to 32bit
+            sum_col[0] = wrapper::vaddw(sum_col[0], wrapper::vgetlow(b0_b16[0]));
+            sum_col[1] = wrapper::vaddw(sum_col[1], wrapper::vgethigh(b0_b16[0]));
+            sum_col[2] = wrapper::vaddw(sum_col[2], wrapper::vgetlow(b0_b16[1]));
+            sum_col[3] = wrapper::vaddw(sum_col[3], wrapper::vgethigh(b0_b16[1]));
+
+            matrix_b += in_b_stride;
+        }
+
+        // Multiply by scalar if necessary
+        if(_mul_by_scalar)
+        {
+            sum_col[0] = wrapper::vmul(sum_col[0], vec_scalar);
+            sum_col[1] = wrapper::vmul(sum_col[1], vec_scalar);
+            sum_col[2] = wrapper::vmul(sum_col[2], vec_scalar);
+            sum_col[3] = wrapper::vmul(sum_col[3], vec_scalar);
+        }
+
+        auto vector_sum_col = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.x() + 16 < width_matrix_b)
+        {
+            wrapper::vstore(vector_sum_col + 0, wrapper::vreinterpret(sum_col[0]));
+            wrapper::vstore(vector_sum_col + 4, wrapper::vreinterpret(sum_col[1]));
+            wrapper::vstore(vector_sum_col + 8, wrapper::vreinterpret(sum_col[2]));
+            wrapper::vstore(vector_sum_col + 12, wrapper::vreinterpret(sum_col[3]));
+        }
+        else
+        {
+            auto left_over = width_matrix_b - id.x();
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(vector_sum_col + k * 4 + j) = sum_col[k][j];
+                }
+            }
+        }
+    },
+    inb, out);
+}
+
+void CpuGemmLowpMatrixBReductionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+    auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+    (this->*_func)(src, dst, window, info);
+}
+
+const char *CpuGemmLowpMatrixBReductionKernel::name() const
+{
+    return "CpuGemmLowpMatrixBReductionKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
\ No newline at end of file
diff --git a/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h b/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h
new file mode 100644
index 0000000..106980f
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h
@@ -0,0 +1,157 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_GEMMLOWP_REDUCTION_KERNEL_H
+#define ARM_COMPUTE_CPU_GEMMLOWP_REDUCTION_KERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+// Forward declarations
+struct GEMMLowpReductionKernelInfo;
+namespace cpu
+{
+namespace kernels
+{
+/** Kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ *       https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ */
+class CpuGemmLowpMatrixAReductionKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuGemmLowpMatrixAReductionKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmLowpMatrixAReductionKernel);
+    /** Initialise the kernel's input and output.
+     *
+     * @param[in]  src  Input tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
+     * @param[out] dst  Output row-vector of sums of all the entries in each row of mtx_a. Data type supported: S32
+     * @param[in]  info Kernel metadata:
+     *                            - k            (num_mtx_a_cols) Number of matrix A columns
+     *                            - is_reshaped  (is_interleaved4x4) True if the matrix A has been interleaved4x4
+     *                            - scalar       Scalar value to multiply each reduced row by.
+     *                            - mul_byscalar True if each reduced column must be multiplied by a scalar value.
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuGemmLowpMatrixAReductionKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    /** Execution of the reduction kernel specialized on the input type
+     *
+     * @param[in] src    Input tensor
+     * @param[in] dst    Output tensor
+     * @param[in] window Execution window
+     */
+    template <typename T>
+    void run_internal(const ITensor *src, ITensor *dst, const Window &window);
+
+    /** Common signature for all reduction functions
+     *
+     * @param[in]  src    Input tensor
+     * @param[out] dst    Output tensor
+     * @param[in]  window Region on which to execute the kernel. (Must be a valid region of the window returned by window()).
+     */
+    using CpuGemmLowpMatrixAReductionKernelPtr = void (CpuGemmLowpMatrixAReductionKernel::*)(const ITensor *src, ITensor *dst, const Window &window);
+
+    CpuGemmLowpMatrixAReductionKernelPtr _func{ nullptr };
+    int32_t                              _k{ 0 };
+    int32_t                              _scalar{ 0 };
+    bool                                 _mul_by_scalar{ false };
+};
+
+/** Kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ *       https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ */
+class CpuGemmLowpMatrixBReductionKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuGemmLowpMatrixBReductionKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmLowpMatrixBReductionKernel);
+    /** Initialise the kernel's input and output.
+     *
+     * @param[in]  src  Input tensor. Data type supported: Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
+     * @param[out] dst  Output row-vector of sums of all the entries in each column of mtx_b. Data type supported: S32
+     * @param[in]  info Kernel metadata:
+     *                            - k            (num_mtx_b_rows) Number of matrix B rows.
+     *                            - is_reshaped  (is_transposed1xW) True if the input tensor is transposed 1xW.
+     *                            - scalar       Scalar value to multiply each reduced row by.
+     *                            - mul_byscalar True if each reduced row must be multiplied by a scalar value.
+     */
+    void configure(const ITensorInfo *src, ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuGemmLowpMatrixBReductionKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const GEMMLowpReductionKernelInfo &info);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    /** Execution of the reduction kernel specialized on the input type
+     *
+     * @param[in] src    Input tensor
+     * @param[in] dst    Output tensor
+     * @param[in] window Execution window
+     * @param[in] info   Thread-related information
+     */
+    template <typename T>
+    void run_internal(const ITensor *src, ITensor *dst, const Window &window, const ThreadInfo &info);
+
+    /** Common signature for all reduction functions
+     *
+     * @param[in]  src    Input tensor
+     * @param[out] dst    Output tensor
+     * @param[in]  window Region on which to execute the kernel. (Must be a valid region of the window returned by window()).
+     */
+    using CpuGemmLowpMatrixBReductionKernelPtr = void (CpuGemmLowpMatrixBReductionKernel::*)(const ITensor *src, ITensor *dst, const Window &window, const ThreadInfo &info);
+
+    CpuGemmLowpMatrixBReductionKernelPtr _func{ nullptr };
+    int32_t                              _k{ 0 };
+    int32_t                              _scalar{ 0 };
+    bool                                 _mul_by_scalar{ false };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_GEMMLOWP_REDUCTION_KERNEL_H */
diff --git a/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp
new file mode 100644
index 0000000..9b1bf08
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp
@@ -0,0 +1,417 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
+                          int32_t a_offset, int32_t b_offset)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+
+    // If a_offset == 0, vector_sum_col can be a nullptr
+    if(a_offset != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+        ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+    }
+
+    // If b_offset == 0, vector_sum_row can be a nullptr
+    if(b_offset != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+        // Check if input is a 3D reinterpretation
+        const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+        // Validate input
+        ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
+        ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+        TensorShape output_shape = mm_result->tensor_shape();
+        if(output_shape.num_dimensions() > 1)
+        {
+            const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+            TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+            vector_sum_row_shape.collapse_from(1);
+            output_shape.collapse_from(output_batch_idx);
+
+            ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+                                            "mm_result tensor must have the same number of batches of output tensor");
+
+            if(a_offset != 0)
+            {
+                TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+                vector_sum_col_shape.collapse_from(1);
+
+                ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
+                                                "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
+            }
+        }
+    }
+
+    return Status{};
+}
+
+void run_offset_contribution(const Window &window,
+                             ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row,
+                             int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col, bool is_gemm3d)
+{
+    Window collapsed_window = window.collapse_if_possible(window, Window::DimZ);
+    collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+    const int depth_input  = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+    const int window_start_x = window.x().start();
+    const int window_end_x   = window.x().end();
+    const int window_step_x  = 16;
+
+    Iterator mm_result_it(mm_result, collapsed_window);
+
+    if((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true
+    {
+        // Set window for vector_sum_col
+        Window win_vector_sum_col(collapsed_window);
+        win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+        win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+        // Set window for vector_sum_row
+        Window win_vector_sum_row(collapsed_window);
+        win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+        win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+        Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+        Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+        // Offset in case vector_sum_col is batched
+        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+        execute_window_loop(collapsed_window, [&](const Coordinates & id)
+        {
+            const int batch_id           = id.z() / depth_input;
+            auto      vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+            auto      mm_result_ptr      = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+            // Compute the leftover term due to b_offset.
+            int32_t b_offset_term_s32 = *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input);
+            b_offset_term_s32 *= b_offset;
+
+            const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
+
+            int x = window_start_x;
+            for(; x <= (window_end_x - window_step_x); x += window_step_x)
+            {
+                // Compute the leftover term due to a_offset.
+                int32x4x4_t a_offset_term_s32 =
+                {
+                    {
+                        vld1q_s32(vector_sum_col_ptr + x + 0),
+                        vld1q_s32(vector_sum_col_ptr + x + 4),
+                        vld1q_s32(vector_sum_col_ptr + x + 8),
+                        vld1q_s32(vector_sum_col_ptr + x + 12)
+                    }
+                };
+
+                a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+                a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+                a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+                a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+                // Add a_offset_term_s32 and b_offset_term_s32
+                int32x4x4_t offset_term_s32 =
+                {
+                    {
+                        vdupq_n_s32(k_offset),
+                        vdupq_n_s32(k_offset),
+                        vdupq_n_s32(k_offset),
+                        vdupq_n_s32(k_offset)
+                    }
+                };
+
+                offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec));
+                offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec));
+                offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec));
+                offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec));
+
+                int32x4x4_t in_s32 =
+                {
+                    {
+                        vld1q_s32(mm_result_ptr + x + 0),
+                        vld1q_s32(mm_result_ptr + x + 4),
+                        vld1q_s32(mm_result_ptr + x + 8),
+                        vld1q_s32(mm_result_ptr + x + 12)
+                    }
+                };
+
+                // Add the offset terms to GEMM's result
+                in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
+                in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
+                in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
+                in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
+
+                // Store the result with the offset contribution
+                vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+                vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+                vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+                vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+            }
+
+            // Left-overs loop
+            for(; x < window_end_x; ++x)
+            {
+                // Compute the leftover term due to a_offset.
+                int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+                a_offset_term_s32 *= a_offset;
+
+                // Add the offset terms to GEMM's result
+                // Store the result with the offset contribution
+                mm_result_ptr[x] += k_offset + a_offset_term_s32 + b_offset_term_s32;
+            }
+        },
+        vector_sum_col_it, vector_sum_row_it, mm_result_it);
+    }
+    else if((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+        // Set window for vector_sum_row
+        Window win_vector_sum_row(collapsed_window);
+        win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+        win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+        Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+        execute_window_loop(collapsed_window, [&](const Coordinates & id)
+        {
+            const int batch_id      = id.z() / depth_input;
+            auto      mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+            // Compute the leftover term due to b_offset.
+            int32_t b_offset_term_s32 = *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input);
+            b_offset_term_s32 *= b_offset;
+
+            const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
+
+            int x = window_start_x;
+            for(; x <= (window_end_x - window_step_x); x += window_step_x)
+            {
+                int32x4x4_t in_s32 =
+                {
+                    {
+                        vld1q_s32(mm_result_ptr + x + 0),
+                        vld1q_s32(mm_result_ptr + x + 4),
+                        vld1q_s32(mm_result_ptr + x + 8),
+                        vld1q_s32(mm_result_ptr + x + 12)
+                    }
+                };
+
+                // Add the offset terms to GEMM's result
+                in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32_vec);
+                in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32_vec);
+                in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32_vec);
+                in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32_vec);
+
+                // Store the result with the offset contribution
+                vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+                vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+                vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+                vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+            }
+
+            // Left-overs loop
+            for(; x < window_end_x; ++x)
+            {
+                // Add the offset terms to GEMM's result
+                // Store the result with the offset contribution
+                mm_result_ptr[x] += b_offset_term_s32;
+            }
+        },
+        vector_sum_row_it, mm_result_it);
+    }
+    else if((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false
+    {
+        // Set window for vector_sum_col
+        Window win_vector_sum_col(collapsed_window);
+        win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+        win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+        Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+
+        // Offset in case vector_sum_col is batched
+        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+        execute_window_loop(collapsed_window, [&](const Coordinates & id)
+        {
+            const int batch_id           = id.z() / depth_input;
+            auto      vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+            auto      mm_result_ptr      = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+            int x = window_start_x;
+            for(; x <= (window_end_x - window_step_x); x += window_step_x)
+            {
+                // Compute the leftover term due to a_offset.
+                int32x4x4_t a_offset_term_s32 =
+                {
+                    {
+                        vld1q_s32(vector_sum_col_ptr + x + 0),
+                        vld1q_s32(vector_sum_col_ptr + x + 4),
+                        vld1q_s32(vector_sum_col_ptr + x + 8),
+                        vld1q_s32(vector_sum_col_ptr + x + 12)
+                    }
+                };
+
+                a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+                a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+                a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+                a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+                int32x4x4_t in_s32 =
+                {
+                    {
+                        vld1q_s32(mm_result_ptr + x + 0),
+                        vld1q_s32(mm_result_ptr + x + 4),
+                        vld1q_s32(mm_result_ptr + x + 8),
+                        vld1q_s32(mm_result_ptr + x + 12)
+                    }
+                };
+
+                // Add the offset terms to GEMM's result
+                in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
+                in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
+                in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
+                in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);
+
+                // Store the result with the offset contribution
+                vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+                vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+                vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+                vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+            }
+
+            // Left-overs loop
+            for(; x < window_end_x; ++x)
+            {
+                // Compute the leftover term due to a_offset.
+                const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+                // Add the offset terms to GEMM's result
+                // Store the result with the offset contribution
+                mm_result_ptr[x] += a_offset_term_s32 * a_offset;
+            }
+        },
+        vector_sum_col_it, mm_result_it);
+    }
+    else // false, false
+    {
+        // No offset contribution from matrix A and matrix B
+        return;
+    }
+}
+} // namespace
+
+void CpuGemmLowpOffsetContributionKernel::configure(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
+{
+    // Perform validate step
+    ARM_COMPUTE_UNUSED(vector_sum_row);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
+
+    _a_offset = a_offset;
+    _b_offset = b_offset;
+    _k_offset = a_offset * b_offset * k;
+
+    // If a_offset == 0, vector_sum_col can be a nullptr
+    if(a_offset != 0)
+    {
+        // Check if vector_sum_col_shape should be slidden or not
+        // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        _slide_vector_sum_col = vector_sum_col->tensor_shape().num_dimensions() > 1;
+    }
+
+    // Configure kernel window
+    Window win = calculate_max_window(*mm_result, Steps());
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
+                                                     int32_t a_offset, int32_t b_offset)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
+    return Status{};
+}
+
+void CpuGemmLowpOffsetContributionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+    auto mm_result      = tensors.get_tensor(TensorType::ACL_DST);
+
+    // Check if input is a 3D reinterpretation
+    const bool reinterpret_as_3d = vector_sum_row != nullptr
+                                   && mm_result->info()->num_dimensions() > 1
+                                   && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+    run_offset_contribution(window, mm_result, vector_sum_col, vector_sum_row, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, reinterpret_as_3d);
+}
+
+const char *CpuGemmLowpOffsetContributionKernel::name() const
+{
+    return "CpuGemmLowpOffsetContributionKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
\ No newline at end of file
diff --git a/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h
new file mode 100644
index 0000000..f23a46c
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h
@@ -0,0 +1,88 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_KERNEL_H
+#define ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_KERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Kernel used to add the offset contribution after @ref CpuGemmLowpMatrixMultiplyKernel. The computation is performed in-place
+ *
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel),
+ * and adds to it the offset contribution of matrix A and matrix B in-place.
+ *
+ * The final result is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ *                   (vector_sum_col[k] * a_offset) +
+ *                   (vector_sum_row[i] * b_offset) +
+ *                   (a_offset * b_offset * k)
+ *
+ */
+class CpuGemmLowpOffsetContributionKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuGemmLowpOffsetContributionKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmLowpOffsetContributionKernel);
+    /** Initialise the kernel's input and output.
+     *
+     * @param[in, out] mm_result      Input tensor containing the result of @ref CpuGemmLowpMatrixMultiplyKernel. Data type supported: S32
+     * @param[in]      vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
+     *                                Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
+     * @param[in]      vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
+     *                                Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
+     * @param[in]      k              Number of matrix A columns or Matrix B rows
+     * @param[in]      a_offset       Offset to be added to each element of the matrix A.
+     * @param[in]      b_offset       Offset to be added to each element of the matrix B.
+     */
+    void configure(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuGemmLowpOffsetContributionKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    int32_t _a_offset{ 0 };
+    int32_t _b_offset{ 0 };
+    int32_t _k_offset{ 0 };
+    bool    _slide_vector_sum_col{ true };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_KERNEL_H */
diff --git a/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp
new file mode 100644
index 0000000..332ce6f
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp
@@ -0,0 +1,946 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+inline int32x4x4_t load_results_input(const Iterator &mm_result_it, int32_t x)
+{
+    return
+    {
+        {
+            vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 0),
+            vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 4),
+            vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 8),
+            vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 12)
+        }
+    };
+}
+
+inline int32x4x4_t load(const int32_t *ptr, int32_t x)
+{
+    return
+    {
+        {
+            vld1q_s32(ptr + x + 0),
+            vld1q_s32(ptr + x + 4),
+            vld1q_s32(ptr + x + 8),
+            vld1q_s32(ptr + x + 12)
+        }
+    };
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4_t b)
+{
+    return
+    {
+        {
+            vaddq_s32(a.val[0], b),
+            vaddq_s32(a.val[1], b),
+            vaddq_s32(a.val[2], b),
+            vaddq_s32(a.val[3], b)
+        }
+    };
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4x4_t b)
+{
+    return
+    {
+        {
+            vaddq_s32(a.val[0], b.val[0]),
+            vaddq_s32(a.val[1], b.val[1]),
+            vaddq_s32(a.val[2], b.val[2]),
+            vaddq_s32(a.val[3], b.val[3])
+        }
+    };
+}
+
+inline int32x4x4_t mul_s32(int32x4x4_t &a, int32_t mul_scalar)
+{
+    return
+    {
+        {
+            vmulq_n_s32(a.val[0], mul_scalar),
+            vmulq_n_s32(a.val[1], mul_scalar),
+            vmulq_n_s32(a.val[2], mul_scalar),
+            vmulq_n_s32(a.val[3], mul_scalar)
+        }
+    };
+}
+
+inline int32x4x4_t mul_s32(int32x4x4_t &a, const int32_t *multilpier)
+{
+    return
+    {
+        {
+            vmulq_s32(a.val[0], vld1q_s32(multilpier)),
+            vmulq_s32(a.val[1], vld1q_s32(multilpier + 4)),
+            vmulq_s32(a.val[2], vld1q_s32(multilpier + 8)),
+            vmulq_s32(a.val[3], vld1q_s32(multilpier + 12))
+        }
+    };
+}
+
+inline int32x4x4_t get_a_offset(const int32_t *vector_sum_col_ptr, int32_t a_offset, int32_t x)
+{
+    int32x4x4_t a_offset_term_s32 = load(vector_sum_col_ptr, x);
+
+    a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+    a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+    a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+    a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+    return a_offset_term_s32;
+}
+
+inline int32x4_t get_b_offset(const int32_t *vector_sum_row_ptr, int32_t b_offset)
+{
+    int32x4_t b_offset_term_s32 = vld1q_dup_s32(vector_sum_row_ptr);
+    b_offset_term_s32           = vmulq_n_s32(b_offset_term_s32, b_offset);
+    return b_offset_term_s32;
+}
+
+inline int32x4x4_t get_k_offset(int32_t k_offset)
+{
+    return
+    {
+        {
+            vdupq_n_s32(k_offset),
+            vdupq_n_s32(k_offset),
+            vdupq_n_s32(k_offset),
+            vdupq_n_s32(k_offset)
+        }
+    };
+}
+
+inline uint8x16_t finalize_quantization_floating_point(int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8, bool is_bounded_relu)
+{
+    const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+    // Shift final result (negative value shift right)
+    in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+    in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+    in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+    in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+    // Saturate negative values
+    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to U8
+    uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_u8 = vmaxq_u8(out_u8, min_u8);
+        out_u8 = vminq_u8(out_u8, max_u8);
+    }
+
+    return out_u8;
+}
+
+inline int8x16_t finalize_quantization_floating_point(int32x4x4_t &in_s32, int32x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
+{
+    const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+    // Shift final result (negative value shift right)
+    in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+    in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+    in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+    in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+    // Saturate negative values
+    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to S8
+    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_s8 = vmaxq_s8(out_s8, min_s8);
+        out_s8 = vminq_s8(out_s8, max_s8);
+    }
+
+    return out_s8;
+}
+
+inline int8x16_t finalize_quantization_floating_point(int32x4x4_t &in_s32, int32x4x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
+{
+    const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+    // Shift final result (negative value shift right)
+    in_s32.val[0] = vshlq_s32(in_s32.val[0], vnegq_s32(result_shift_s32.val[0]));
+    in_s32.val[1] = vshlq_s32(in_s32.val[1], vnegq_s32(result_shift_s32.val[1]));
+    in_s32.val[2] = vshlq_s32(in_s32.val[2], vnegq_s32(result_shift_s32.val[2]));
+    in_s32.val[3] = vshlq_s32(in_s32.val[3], vnegq_s32(result_shift_s32.val[3]));
+
+    // Saturate negative values
+    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to S8
+    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_s8 = vmaxq_s8(out_s8, min_s8);
+        out_s8 = vminq_s8(out_s8, max_s8);
+    }
+
+    return out_s8;
+}
+
+template <typename T>
+struct VectorTyper
+{
+    using stype = T;
+    using vtype = typename wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128>;
+};
+
+inline Window get_win_vector_sum(const Window &window)
+{
+    Window win_vector_sum(window);
+    win_vector_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
+    win_vector_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
+    return win_vector_sum;
+}
+
+inline Iterator get_vector_sum_col_it(const Window &window, const ITensor *vector_sum_col)
+{
+    Iterator vector_sum_col_it(vector_sum_col, get_win_vector_sum(window));
+    return vector_sum_col_it;
+}
+
+inline Iterator get_vector_sum_row_it(const Window &window, const ITensor *vector_sum_row)
+{
+    Window win_vector_sum_row = get_win_vector_sum(window);
+    win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+    Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+    return vector_sum_row_it;
+}
+
+inline Iterator get_bias_it(const Window &window, const ITensor *bias)
+{
+    Window win_bias(window);
+    win_bias.set(Window::DimY, Window::Dimension(0, 1, 1));
+    win_bias.set(Window::DimZ, Window::Dimension(0, 1, 1));
+    Iterator bias_it(bias, win_bias);
+    return bias_it;
+}
+
+template <typename VT>
+inline void run_offset_contribution_output_stage_window(const int32_t *vector_sum_col_ptr, const int32_t *vector_sum_row_ptr, const int32_t *bias_ptr, Iterator mm_result_it, Iterator out_it,
+                                                        const int32x4_t result_offset_s32, const int32x4_t result_shift_s32,
+                                                        typename VT::vtype min_vec, typename VT::vtype max_vec,
+                                                        int32_t a_offset, int32_t b_offset, int32_t k_offset,
+                                                        int32_t multiplier, int32_t shift, int32_t offset, int32_t min_bound, int32_t max_bound,
+                                                        int window_step_x, int window_start_x, int window_end_x, bool has_a_offset, bool has_b_offset, bool has_bias, bool is_bounded_relu, bool is_fixed_point)
+{
+    int32x4x4_t offset_term_s32 = { 0, 0, 0, 0 };
+    if(!is_fixed_point)
+    {
+        // Combine quantization offset with other offsets.
+        offset_term_s32 = add_s32(offset_term_s32, result_offset_s32);
+    }
+    if(has_a_offset && has_b_offset)
+    {
+        offset_term_s32 = add_s32(offset_term_s32, get_k_offset(k_offset));
+    }
+    if(has_b_offset)
+    {
+        offset_term_s32 = add_s32(offset_term_s32, get_b_offset(vector_sum_row_ptr, b_offset));
+    }
+
+    int x = window_start_x;
+    for(; x <= (window_end_x - window_step_x); x += window_step_x)
+    {
+        int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
+
+        if(has_a_offset)
+        {
+            in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
+        }
+        if(has_bias)
+        {
+            in_s32 = add_s32(in_s32, load(bias_ptr, x));
+        }
+        if(!is_fixed_point || has_b_offset)
+        {
+            in_s32 = add_s32(in_s32, offset_term_s32);
+        }
+        if(!is_fixed_point)
+        {
+            in_s32 = mul_s32(in_s32, multiplier);
+        }
+
+        if(is_fixed_point)
+        {
+            wrapper::vstore(reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
+                            finalize_quantization(in_s32, multiplier, shift, result_offset_s32, min_vec, max_vec, is_bounded_relu));
+        }
+        else
+        {
+            wrapper::vstore(reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
+                            finalize_quantization_floating_point(in_s32, result_shift_s32, min_vec, max_vec, is_bounded_relu));
+        }
+    }
+    // Compute left-over elements
+    for(; x < window_end_x; ++x)
+    {
+        int32_t in_value = *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
+
+        if(has_a_offset)
+        {
+            in_value += (*(vector_sum_col_ptr + x) * a_offset);
+        }
+        if(has_bias)
+        {
+            in_value += *(bias_ptr + x);
+        }
+
+        if(is_fixed_point)
+        {
+            // Finalize and store the result
+            *reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) = finalize_quantization(in_value, multiplier, shift, offset,
+                                                                                              static_cast<typename VT::stype>(min_bound),
+                                                                                              static_cast<typename VT::stype>(max_bound), is_bounded_relu);
+        }
+        else
+        {
+            // Finalize quantization
+            in_value = (in_value * multiplier) >> shift;
+
+            // Bound and store the result
+            if(is_bounded_relu)
+            {
+                in_value = static_cast<typename VT::stype>(std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
+            }
+            *reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) = static_cast<typename VT::stype>(std::max<int32_t>(static_cast<int32_t>(std::numeric_limits<typename VT::stype>::lowest()),
+                                                                                                                          std::min<int32_t>(static_cast<int32_t>(std::numeric_limits<typename VT::stype>::max()), in_value)));
+        }
+    }
+}
+
+inline void run_offset_contribution_output_stage_window_symm(const int32_t *vector_sum_col_ptr, const int32_t *bias_ptr, Iterator mm_result_it, Iterator out_it,
+                                                             const int32_t *result_multipliers, const int32_t *result_shifts,
+                                                             const int32x4_t result_offset, int8x16_t min_s8, int8x16_t max_s8,
+                                                             int32_t a_offset, int32_t offset, int32_t min_bound, int32_t max_bound,
+                                                             int window_step_x, int window_start_x, int window_end_x, bool has_a_offset, bool has_bias, bool is_bounded_relu, bool is_fixed_point)
+{
+    int32x4x4_t offset_term_s32 = { 0, 0, 0, 0 };
+    if(!is_fixed_point)
+    {
+        // Combine quantization offset with other offsets.
+        offset_term_s32 = add_s32(offset_term_s32, result_offset);
+    }
+
+    int x = window_start_x;
+    for(; x <= (window_end_x - window_step_x); x += window_step_x)
+    {
+        int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
+
+        if(has_a_offset)
+        {
+            in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
+        }
+        if(has_bias)
+        {
+            in_s32 = add_s32(in_s32, load(bias_ptr, x));
+        }
+        if(!is_fixed_point)
+        {
+            in_s32 = add_s32(in_s32, offset_term_s32);
+            in_s32 = mul_s32(in_s32, result_multipliers + x);
+        }
+
+        if(is_fixed_point)
+        {
+            vst1q_s8(reinterpret_cast<int8_t *>(out_it.ptr() + x), finalize_quantization_symm(in_s32, load(result_multipliers, x), load(result_shifts, x), result_offset, min_s8, max_s8, is_bounded_relu));
+        }
+        else
+        {
+            vst1q_s8(reinterpret_cast<int8_t *>(out_it.ptr() + x), finalize_quantization_floating_point(in_s32, load(result_shifts, x), min_s8, max_s8, is_bounded_relu));
+        }
+    }
+    // Compute left-over elements
+    for(; x < window_end_x; ++x)
+    {
+        int32_t in_value = *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
+
+        if(has_a_offset)
+        {
+            in_value += (*(vector_sum_col_ptr + x) * a_offset);
+        }
+        if(has_bias)
+        {
+            in_value += *(bias_ptr + x);
+        }
+
+        if(is_fixed_point)
+        {
+            // Finalize and store the result
+            *(out_it.ptr() + x) = finalize_quantization(in_value, result_multipliers[x], result_shifts[x], offset, static_cast<int8_t>(min_bound), static_cast<int8_t>(max_bound), is_bounded_relu);
+        }
+        else
+        {
+            // Finalize quantization
+            in_value = (in_value * result_multipliers[x]) >> (-result_shifts[x]);
+
+            // Bound and store the result
+            if(is_bounded_relu)
+            {
+                in_value = static_cast<int8_t>(std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
+            }
+            *(out_it.ptr() + x) = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
+        }
+    }
+}
+
+template <typename T>
+void run_offset_contribution_output_stage(const Window &window,
+                                          const ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *bias, ITensor *output,
+                                          int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col,
+                                          GEMMLowpOutputStageInfo output_stage, bool is_gemm3d, bool is_bounded_relu, bool is_fixed_point)
+{
+    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+    using Typer        = VectorTyper<T>;
+
+    const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+    const int depth_input  = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+    const int32_t multiplier = output_stage.gemmlowp_multiplier;
+    const int32_t shift      = output_stage.gemmlowp_shift;
+    const int32_t offset     = output_stage.gemmlowp_offset;
+    const int32_t min_bound  = output_stage.gemmlowp_min_bound;
+    const int32_t max_bound  = output_stage.gemmlowp_max_bound;
+
+    const int32x4_t result_offset_s32 = vdupq_n_s32(offset);
+    const int32x4_t result_shift_s32  = vdupq_n_s32(is_fixed_point ? shift : -shift);
+    const auto      min_vec           = wrapper::vdup_n(static_cast<T>(min_bound), ExactTagType{});
+    const auto      max_vec           = wrapper::vdup_n(static_cast<T>(max_bound), ExactTagType{});
+
+    const int  window_step_x  = 16;
+    const auto window_start_x = static_cast<int>(window.x().start());
+    const auto window_end_x   = static_cast<int>(window.x().end());
+
+    Window win(window);
+    win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
+
+    Iterator mm_result_it(mm_result, win);
+    Iterator out_it(output, win);
+
+    if((a_offset != 0) && (b_offset != 0))
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+        Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+        Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+        // Offset in case vector_sum_col is batched
+        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+                                                + id.y() + (id.z() % depth_input) * height_input;
+                run_offset_contribution_output_stage_window<Typer>(vector_sum_col_ptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()),
+                                                                   mm_result_it,
+                                                                   out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, true, true, true, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, vector_sum_row_it, bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+                                                + id.y() + (id.z() % depth_input) * height_input;
+                run_offset_contribution_output_stage_window<Typer>(vector_sum_col_ptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, true, true, false, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, vector_sum_row_it, mm_result_it, out_it);
+        }
+    }
+    else if((a_offset == 0) && (b_offset != 0))
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+        Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+                                                + id.y() + (id.z() % depth_input) * height_input;
+                run_offset_contribution_output_stage_window<Typer>(nullptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
+                                                                   out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, false, true, true, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_row_it, bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+                                                + id.y() + (id.z() % depth_input) * height_input;
+                run_offset_contribution_output_stage_window<Typer>(nullptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, false, true, false, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_row_it, mm_result_it, out_it);
+        }
+    }
+    else if((a_offset != 0) && (b_offset == 0))
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+
+        Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+
+        // Offset in case vector_sum_col is batched
+        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                run_offset_contribution_output_stage_window<Typer>(vector_sum_col_ptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
+                                                                   out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, true, false, true, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                run_offset_contribution_output_stage_window<Typer>(vector_sum_col_ptr, nullptr, nullptr, mm_result_it, out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, true, false, false, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, mm_result_it, out_it);
+        }
+    }
+    else
+    {
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates &)
+            {
+                run_offset_contribution_output_stage_window<Typer>(nullptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, false, false, true, is_bounded_relu, is_fixed_point);
+            },
+            bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates &)
+            {
+                run_offset_contribution_output_stage_window<Typer>(nullptr, nullptr, nullptr, mm_result_it, out_it,
+                                                                   result_offset_s32, result_shift_s32,
+                                                                   min_vec, max_vec, a_offset, b_offset, k_offset,
+                                                                   multiplier, shift, offset, min_bound, max_bound,
+                                                                   window_step_x, window_start_x, window_end_x, false, false, false, is_bounded_relu, is_fixed_point);
+            },
+            mm_result_it, out_it);
+        }
+        return;
+    }
+}
+
+void run_offset_contribution_output_stage_symm(const Window &window,
+                                               const ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *bias, ITensor *output,
+                                               int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col,
+                                               GEMMLowpOutputStageInfo output_stage, bool is_gemm3d, bool is_bounded_relu, bool is_fixed_point)
+{
+    ARM_COMPUTE_UNUSED(vector_sum_row, b_offset, k_offset);
+
+    const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+    const int32_t offset    = output_stage.gemmlowp_offset;
+    const int32_t min_bound = output_stage.gemmlowp_min_bound;
+    const int32_t max_bound = output_stage.gemmlowp_max_bound;
+
+    const int32_t *result_multipliers = output_stage.gemmlowp_multipliers.data();
+    const int32_t *result_shifts      = output_stage.gemmlowp_shifts.data();
+    const int32x4_t result_offset_s32  = vdupq_n_s32(offset);
+    const int8x16_t min_s8             = vdupq_n_s8(static_cast<int8_t>(min_bound));
+    const int8x16_t max_s8             = vdupq_n_s8(static_cast<int8_t>(max_bound));
+
+    const int  window_step_x  = 16;
+    const auto window_start_x = static_cast<int>(window.x().start());
+    const auto window_end_x   = static_cast<int>(window.x().end());
+
+    Window win(window);
+    win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+    Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
+
+    Iterator mm_result_it(mm_result, win);
+    Iterator out_it(output, win);
+
+    if(a_offset != 0)
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+
+        Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+
+        // Offset in case vector_sum_col is batched
+        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                run_offset_contribution_output_stage_window_symm(vector_sum_col_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+                                                                 result_multipliers, result_shifts,
+                                                                 result_offset_s32, min_s8, max_s8,
+                                                                 a_offset, offset, min_bound, max_bound,
+                                                                 window_step_x, window_start_x, window_end_x, true, true, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates & id)
+            {
+                const int  batch_id           = id.z() / depth_input;
+                const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
+                run_offset_contribution_output_stage_window_symm(vector_sum_col_ptr, nullptr, mm_result_it, out_it,
+                                                                 result_multipliers, result_shifts,
+                                                                 result_offset_s32, min_s8, max_s8,
+                                                                 a_offset, offset, min_bound, max_bound,
+                                                                 window_step_x, window_start_x, window_end_x, true, false, is_bounded_relu, is_fixed_point);
+            },
+            vector_sum_col_it, mm_result_it, out_it);
+        }
+    }
+    else
+    {
+        if(bias != nullptr)
+        {
+            Iterator bias_it = get_bias_it(collapsed_window, bias);
+            execute_window_loop(collapsed_window, [&](const Coordinates &)
+            {
+                run_offset_contribution_output_stage_window_symm(nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+                                                                 result_multipliers, result_shifts,
+                                                                 result_offset_s32, min_s8, max_s8,
+                                                                 a_offset, offset, min_bound, max_bound,
+                                                                 window_step_x, window_start_x, window_end_x, false, true, is_bounded_relu, is_fixed_point);
+            },
+            bias_it, mm_result_it, out_it);
+        }
+        else
+        {
+            execute_window_loop(collapsed_window, [&](const Coordinates &)
+            {
+                run_offset_contribution_output_stage_window_symm(nullptr, nullptr, mm_result_it, out_it,
+                                                                 result_multipliers, result_shifts,
+                                                                 result_offset_s32, min_s8, max_s8,
+                                                                 a_offset, offset, min_bound, max_bound,
+                                                                 window_step_x, window_start_x, window_end_x, false, false, is_bounded_relu, is_fixed_point);
+            },
+            mm_result_it, out_it);
+        }
+        return;
+    }
+}
+
+Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
+                          int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+    if(output->data_type() != DataType::QASYMM8)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) > 1 && output_stage.gemmlowp_multipliers.size() > 1 && b_offset != 0);
+    }
+    ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
+    ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN && output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
+
+    if(bias != nullptr)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
+    }
+
+    // If a_offset == 0, vector_sum_col can be a nullptr
+    if(a_offset != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+        ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+    }
+
+    // If b_offset == 0, vector_sum_row can be a nullptr
+    if(b_offset != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+        // Check if input is a 3D reinterpretation
+        const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+        // Validate input
+        ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
+        ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+        TensorShape output_shape = output->tensor_shape();
+        if(output_shape.num_dimensions() > 1)
+        {
+            const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+            TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+            vector_sum_row_shape.collapse_from(1);
+            output_shape.collapse_from(output_batch_idx);
+
+            ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+                                            "mm_result tensor must have the same number of batches of output tensor");
+
+            if(a_offset != 0)
+            {
+                TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+                vector_sum_col_shape.collapse_from(1);
+
+                ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
+                                                "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
+            }
+        }
+    }
+
+    if(output->total_size() != 0)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
+    }
+
+    return Status{};
+}
+} // namespace
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::configure(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col,
+                                                               const ITensorInfo *vector_sum_row, const ITensorInfo *bias, ITensorInfo *dst,
+                                                               int32_t k, int32_t a_offset, int32_t b_offset,
+                                                               GEMMLowpOutputStageInfo output_stage)
+{
+    ARM_COMPUTE_UNUSED(vector_sum_row, bias);
+    // Perform validate step
+    ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, dst, a_offset, b_offset, output_stage));
+
+    _a_offset     = a_offset;
+    _b_offset     = b_offset;
+    _k_offset     = a_offset * b_offset * k;
+    _output_stage = output_stage;
+
+    // If a_offset == 0, vector_sum_col can be a nullptr
+    if(a_offset != 0)
+    {
+        // Check if vector_sum_col_shape should be slidden or not
+        // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        _slide_vector_sum_col = vector_sum_col->tensor_shape().num_dimensions() > 1;
+    }
+
+    // Output auto inizialitation if not yet initialized
+    auto_init_if_empty(*dst, mm_result->clone()->set_data_type(DataType::QASYMM8));
+
+    // Configure kernel window
+    Window win = calculate_max_window(*mm_result, Steps());
+
+    // Note: This kernel performs 16 elements per iteration.
+    // However, since we use a left-over for loop, we cannot have any read or write out of memory
+    // For this reason num_elems_processed_per_iteration is 1 and so update_window_and_padding() can be skipped
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col,
+                                                                const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
+                                                                int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
+    return Status{};
+}
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto mm_result      = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+    auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+    auto bias           = tensors.get_const_tensor(TensorType::ACL_SRC_3);
+    auto dst            = tensors.get_tensor(TensorType::ACL_DST);
+
+    PixelValue type_min{};
+    PixelValue type_max{};
+    std::tie(type_min, type_max) = get_min_max(dst->info()->data_type());
+    int32_t type_min_int = type_min.get<int32_t>();
+    int32_t type_max_int = type_max.get<int32_t>();
+
+    const bool reinterpret_as_3d = vector_sum_row != nullptr
+                                   && mm_result->info()->num_dimensions() > 1
+                                   && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+    const bool is_bounded_relu = !(_output_stage.gemmlowp_min_bound <= type_min_int && _output_stage.gemmlowp_max_bound >= type_max_int);
+
+    // Check if we need to perform fixed point requantization
+    const bool is_fixed_point = _output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN;
+
+    // Check if symmetric per-channel execution
+    const bool is_signed = dst->info()->data_type() == DataType::QASYMM8_SIGNED;
+
+    // Check if symmetric per-channel execution
+    const bool is_symm = _output_stage.is_quantized_per_channel;
+
+    if(is_symm)
+    {
+        run_offset_contribution_output_stage_symm(window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, _output_stage,
+                                                  reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+    }
+    else
+    {
+        if(is_signed)
+        {
+            run_offset_contribution_output_stage<int8_t>(window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, _output_stage,
+                                                         reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+        }
+        else
+        {
+            run_offset_contribution_output_stage<uint8_t>(window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, _output_stage,
+                                                          reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+        }
+    }
+}
+
+const char *CpuGemmLowpOffsetContributionOutputStageKernel::name() const
+{
+    return "CpuGemmLowpOffsetContributionOutputStageKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h
new file mode 100644
index 0000000..404f2c9
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h
@@ -0,0 +1,114 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_OUTPUTSTAGE_KERNEL_H
+#define ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_OUTPUTSTAGE_KERNEL_H
+
+#include "arm_compute/core/KernelDescriptors.h"
+#include "src/core/common/Macros.h"
+#include "src/core/cpu/ICpuKernel.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+/** Kernel used to add the offset contribution and perform the output stage after @ref CpuGemmLowpMatrixMultiplyKernel.
+ *
+ * The computation is performed in-place
+ *
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel),
+ * and adds to it the offset contribution of matrix A and matrix B in-place.
+ *
+ * The output stage can perform either QuantizeDownInt32ToUint8Scale or QuantizeDownInt32ToUint8ScaleByFixedPoint for Uint8.
+ * The output stage can perform either QuantizeDownInt32ToInt8Scale or QuantizeDownInt32ToInt8ScaleByFixedPoint for Int8.
+ *
+ * For QuantizeDownInt32ToUint8Scale/QuantizeDownInt32ToInt8Scale the final result is:
+ *
+ * ((mm_result'[i][k] + result_offset) * result_mult_int) >> result_shift
+ *
+ * For QuantizeDownInt32ToUint8ScaleByFixedPoint/QuantizeDownInt32ToInt8ScaleByFixedPoint the final result is:
+ *
+ * (FixedPointMul(mm_result'[i][k], result_fixedpoint_multiplier) >> result_shift) + result_offset_after_shift
+ *
+ * where FixedPointMul(x, y) is the nearest integer to the following
+ * mathematical expression, evaluated without overflow or intermediate rounding:
+ *
+ * (x * y) / 2^31
+ *
+ * and mm_result'[i][k] = mm_result[i][k] +
+ *                        (vector_sum_col[k] * a_offset) +
+ *                        (vector_sum_row[i] * b_offset) +
+ *                        (a_offset * b_offset * k)
+ */
+
+class CpuGemmLowpOffsetContributionOutputStageKernel : public ICpuKernel
+{
+public:
+    /** Default constructor */
+    CpuGemmLowpOffsetContributionOutputStageKernel() = default;
+    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuGemmLowpOffsetContributionOutputStageKernel);
+    /** Initialise the kernel inputs and output.
+     *
+     * @param[in]  mm_result      Input tensor info containing the result of @ref CpuGemmLowpMatrixMultiplyKernel. Data type supported: S32
+     * @param[in]  vector_sum_col Input row-vector tensor info of sums of all the entries in each column of matrix B.
+     *                            Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
+     * @param[in]  vector_sum_row Input row-vector tensor info of sums of all the entries in each row of matrix A.
+     * @param[in]  bias           Biases tensor info. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+     *                            Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p mm_result.
+     * @param[out] dst            Output tensor info containing the final quantized result. Data type supported: QASYMM8/QASYMM8_SIGNED
+     * @param[in]  k              Number of matrix A columns or Matrix B rows
+     * @param[in]  a_offset       Offset to be added to each element of the matrix A.
+     * @param[in]  b_offset       Offset to be added to each element of the matrix B.
+     * @param[in]  output_stage   GEMMLowp output stage info, providing the type of quantization and the necessary parameters.
+     */
+    void configure(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, ITensorInfo *dst, int32_t k, int32_t a_offset,
+                   int32_t b_offset,
+                   GEMMLowpOutputStageInfo output_stage);
+    /** Static function to check if given info will lead to a valid configuration
+     *
+     * Similar to CpuGemmLowpOffsetContributionOutputStageKernel::configure()
+     *
+     * @return a status
+     */
+    static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *dst, int32_t a_offset,
+                           int32_t                 b_offset,
+                           GEMMLowpOutputStageInfo output_stage);
+
+    // Inherited methods overridden:
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
+    const char *name() const override;
+
+private:
+    /** Function to use for the particular tensors passed to configure() */
+    int32_t                 _a_offset{ 0 };
+    int32_t                 _b_offset{ 0 };
+    int32_t                 _k_offset{ 0 };
+    bool                    _slide_vector_sum_col{ true };
+    GEMMLowpOutputStageInfo _output_stage{ GEMMLowpOutputStageInfo() };
+};
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CPU_GEMMLOWP_OFFSETCONTRIBUTION_OUTPUTSTAGE_KERNEL_H */
diff --git a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h
index f3cdbdc..ca5e1b4 100644
--- a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h
+++ b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h
@@ -38,7 +38,7 @@
 {
 /** Kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
  *
- * This kernel takes a final int32 accumulator value (the output of @ref NEGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
  * The following computations will be performed by the kernel:
  *
  *  -# Add offset terms to final result
diff --git a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h
index 7a1197d..e360e65 100644
--- a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h
+++ b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h
@@ -38,7 +38,7 @@
 {
 /** Kernel used to quantize down the int32 accumulator values of GEMMLowp to QSYMM16
  *
- * This kernel takes a final int32 accumulator value (the output of @ref NEGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QSYMM16 value.
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel), and processes it to obtain the final QSYMM16 value.
  * The following computations will be performed by the kernel:
  *
  *  -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
diff --git a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h
index 9ebb529..9c213ab 100644
--- a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h
+++ b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h
@@ -38,7 +38,7 @@
 {
 /** Kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8_SIGNED
  *
- * This kernel takes a final int32 accumulator value (the output of @ref NEGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8_SIGNED value.
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8_SIGNED value.
  * The following computations will be performed by the kernel:
  *
  *  -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
diff --git a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
index 312cad9..13b30f3 100644
--- a/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
+++ b/src/core/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
@@ -38,7 +38,7 @@
 {
 /** Kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
  *
- * This kernel takes a final int32 accumulator value (the output of @ref NEGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8 value.
+ * This kernel takes a final int32 accumulator value (the output of @ref CpuGemmLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8 value.
  * The following computations will be performed by the kernel:
  *
  *  -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier