Port NEGEMMLowp Part 2

Details:
Extend NEConvertQuantizedSignednessKernel
Port NEGEMMInterleave4x4Kernel to CpuGemmInterleave4x4Kernel
Port NEGEMMTranspose1xWKernel to CpuGemmTranspose1xWKernel
Port NEGEMMLowpMatrixAReductionKernel to CpuGemmLowpMatrixAReductionKernel
Port NEGEMMLowpMatrixBReductionKernel to CpuGemmLowpMatrixBReductionKernel
Port NEGEMMLowpOffsetContributionOutputStageKernel to CpuGemmLowpOffsetContributionOutputStageKernel
Port NEGEMMLowpOffsetContributionKernel to CpuGemmLowpOffsetContributionKernel

Resolves: COMPMID-4403

Change-Id: I3227f052f25e7b41d073bbea1da8a881fcd78b8e
Signed-off-by: Manuel Bottini <manuel.bottini@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5875
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
diff --git a/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
new file mode 100644
index 0000000..35e542f
--- /dev/null
+++ b/src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
@@ -0,0 +1,1053 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+void inline vector_matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
+{
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        if(id.x() > width_b)
+        {
+            return;
+        }
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        uint32x4x4_t c0 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        auto vec_a          = reinterpret_cast<const uint8_t *>(ina.ptr());
+        auto matrix_b       = reinterpret_cast<const uint8_t *>(inb.ptr());
+        auto vec_a_end_addr = vec_a + width_a;
+
+        // This for loop performs 8 accumulations
+        for(; vec_a <= (vec_a_end_addr - 8);)
+        {
+            const uint8x8_t  a00_u8 = vld1_u8(vec_a);
+            const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b);
+            const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b);
+            const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b);
+            const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b);
+            const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b);
+            const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b);
+            const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b);
+            const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b);
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4x2_t a00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(a00_u8)),
+                    vget_high_u16(vmovl_u8(a00_u8))
+                }
+            };
+
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            const uint16x4x4_t b10_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b10_u8)))
+                }
+            };
+
+            const uint16x4x4_t b20_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b20_u8)))
+                }
+            };
+
+            const uint16x4x4_t b30_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b30_u8)))
+                }
+            };
+
+            const uint16x4x4_t b40_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b40_u8)))
+                }
+            };
+
+            const uint16x4x4_t b50_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b50_u8)))
+                }
+            };
+
+            const uint16x4x4_t b60_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b60_u8)))
+                }
+            };
+
+            const uint16x4x4_t b70_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b70_u8)))
+                }
+            };
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0);
+
+            // Accumulate 1:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1);
+
+            // Accumulate 2:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2);
+
+            // Accumulate 3:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3);
+
+            // Accumulate 4:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0);
+
+            // Accumulate 5:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1);
+
+            // Accumulate 6:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2);
+
+            // Accumulate 7:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3);
+
+            vec_a += 8;
+            matrix_b += 8 * stride_b;
+        }
+
+        // This for loop performs the left-over accumulations
+        for(; vec_a < vec_a_end_addr;)
+        {
+            const uint8x8_t  a00_u8 = vld1_dup_u8(vec_a);
+            const uint8x16_t b00_u8 = vld1q_u8(matrix_b);
+
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+            vec_a += 1;
+            matrix_b += stride_b;
+        }
+
+        auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.x() < (width_out - 16))
+        {
+            vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0]));
+            vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1]));
+            vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2]));
+            vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3]));
+        }
+        else
+        {
+            auto left_over = width_out - id.x();
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(vec_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline vector_matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
+{
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        if(id.x() > width_b)
+        {
+            return;
+        }
+
+        // Accumulators for the block 0
+        int32x4x4_t c0 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        auto vec_a          = reinterpret_cast<const int8_t *>(ina.ptr());
+        auto matrix_b       = reinterpret_cast<const int8_t *>(inb.ptr());
+        auto vec_a_end_addr = vec_a + width_a;
+
+        // This for loop performs 8 accumulations
+        for(; vec_a <= (vec_a_end_addr - 8);)
+        {
+            const int8x8_t  a00_s8 = vld1_s8(vec_a);
+            const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b);
+            const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b);
+            const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b);
+            const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b);
+            const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b);
+            const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b);
+            const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b);
+            const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b);
+
+            // Convert a00_s8 to int16_t and get the lower part
+            const int16x4x2_t a00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(a00_s8)),
+                    vget_high_s16(vmovl_s8(a00_s8))
+                }
+            };
+
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            const int16x4x4_t b10_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b10_s8)))
+                }
+            };
+
+            const int16x4x4_t b20_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b20_s8)))
+                }
+            };
+
+            const int16x4x4_t b30_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b30_s8)))
+                }
+            };
+
+            const int16x4x4_t b40_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b40_s8)))
+                }
+            };
+
+            const int16x4x4_t b50_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b50_s8)))
+                }
+            };
+
+            const int16x4x4_t b60_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b60_s8)))
+                }
+            };
+
+            const int16x4x4_t b70_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b70_s8)))
+                }
+            };
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0);
+
+            // Accumulate 1:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1);
+
+            // Accumulate 2:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2);
+
+            // Accumulate 3:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3);
+
+            // Accumulate 4:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0);
+
+            // Accumulate 5:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1);
+
+            // Accumulate 6:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2);
+
+            // Accumulate 7:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3);
+
+            vec_a += 8;
+            matrix_b += 8 * stride_b;
+        }
+
+        // This for loop performs the left-over accumulations
+        for(; vec_a < vec_a_end_addr;)
+        {
+            const int8x8_t  a00_s8 = vld1_dup_s8(vec_a);
+            const int8x16_t b00_s8 = vld1q_s8(matrix_b);
+
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            // Convert a00_s8 to uint16_t and get the lower part
+            const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+            // Accumulate 0:
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+            vec_a += 1;
+            matrix_b += stride_b;
+        }
+
+        auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.x() < (width_out - 16))
+        {
+            vst1q_s32(vec_out + 0, c0.val[0]);
+            vst1q_s32(vec_out + 4, c0.val[1]);
+            vst1q_s32(vec_out + 8, c0.val[2]);
+            vst1q_s32(vec_out + 12, c0.val[3]);
+        }
+        else
+        {
+            auto left_over = width_out - id.x();
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(vec_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+    const auto   width_out  = static_cast<int>(out_info.dimension(0));
+    const auto   height_out = static_cast<int>(out_info.dimension(1));
+    const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        const uint8_t *mtx_a0 = ina.ptr();
+        const uint8_t *mtx_b0 = inb.ptr();
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        uint32x4x4_t c0 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 1
+        uint32x4x4_t c1 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 2
+        uint32x4x4_t c2 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        // Accumulators for the block 3
+        uint32x4x4_t c3 =
+        {
+            {
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0),
+                vdupq_n_u32(0)
+            }
+        };
+
+        for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+        {
+            const uint8x8_t  a00_u8 = vld1_u8(mtx_a0);
+            const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
+
+            // Convert a00_u8 to uint16_t and get the lower part
+            const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+            // Convert b00_s8 to uint16_t
+            const uint16x4x4_t b00_u16 =
+            {
+                {
+                    vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+                    vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
+                    vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
+                }
+            };
+
+            // 4x4 block 0
+            c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+            c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+            c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+            c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+            // 4x4 block 1
+            c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
+            c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
+            c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
+            c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
+
+            // 4x4 block 2
+            c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
+            c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
+            c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
+            c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
+
+            // 4x4 block 3
+            c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
+            c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
+            c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
+            c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
+        }
+
+        auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+
+        if(id.y() < height_out && id.x() < (width_out - 16))
+        {
+            vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
+            vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
+            vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
+            vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
+            if(id.y() + 1 < height_out)
+            {
+                vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
+                vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
+                vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
+                vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
+                if(id.y() + 2 < height_out)
+                {
+                    vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
+                    vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
+                    if(id.y() + 3 < height_out)
+                    {
+                        vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
+                        vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
+                    }
+                }
+            }
+        }
+        else
+        {
+            const auto left_over_value = width_out - id.x();
+            auto       left_over       = left_over_value;
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(mtx_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+            if(id.y() + 1 < height_out)
+            {
+                left_over = left_over_value;
+                for(auto k = 0; k < 4 && left_over; ++k)
+                {
+                    for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                    {
+                        *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+                    }
+                }
+                if(id.y() + 2 < height_out)
+                {
+                    left_over = left_over_value;
+                    for(auto k = 0; k < 4 && left_over; ++k)
+                    {
+                        for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                        {
+                            *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+                        }
+                    }
+                    if(id.y() + 3 < height_out)
+                    {
+                        left_over = left_over_value;
+                        for(auto k = 0; k < 4 && left_over; ++k)
+                        {
+                            for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                            {
+                                *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+                            }
+                        }
+                    }
+                }
+            }
+        }
+    },
+    ina, inb, out);
+}
+
+void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+    const auto   width_out  = static_cast<int>(out_info.dimension(0));
+    const auto   height_out = static_cast<int>(out_info.dimension(1));
+    const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+    // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW
+    // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
+    // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
+    execute_window_loop(window, [&](const Coordinates & id)
+    {
+        auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
+        auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
+
+        // Note: Since the input are all positives, we can use uint32_t
+        // Accumulators for the block 0
+        int32x4x4_t c0 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 1
+        int32x4x4_t c1 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 2
+        int32x4x4_t c2 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        // Accumulators for the block 3
+        int32x4x4_t c3 =
+        {
+            {
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0),
+                vdupq_n_s32(0)
+            }
+        };
+
+        for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+        {
+            const int8x8_t  a00_s8 = vld1_s8(mtx_a0);
+            const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
+
+            // Convert a00_s8 to uint16_t and get the lower part
+            const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+            // Convert b00_s8 to int16_t
+            const int16x4x4_t b00_s16 =
+            {
+                {
+                    vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+                    vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
+                    vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
+                }
+            };
+
+            // 4x4 block 0
+            c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+            c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+            c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+            c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+            // 4x4 block 1
+            c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
+            c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
+            c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
+            c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
+
+            // 4x4 block 2
+            c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
+            c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
+            c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
+            c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
+
+            // 4x4 block 3
+            c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
+            c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
+            c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
+            c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
+        }
+        auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+        if(id.y() < height_out && id.x() < (width_out - 16))
+        {
+            vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
+            vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
+            vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
+            vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
+            if(id.y() + 1 < height_out)
+            {
+                vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
+                vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
+                vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
+                vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
+                if(id.y() + 2 < height_out)
+                {
+                    vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
+                    vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
+                    if(id.y() + 3 < height_out)
+                    {
+                        vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
+                        vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
+                    }
+                }
+            }
+        }
+        else if(id.y() < height_out)
+        {
+            const auto left_over_value = width_out - id.x();
+            auto       left_over       = left_over_value;
+            for(auto k = 0; k < 4 && left_over; ++k)
+            {
+                for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                {
+                    *(mtx_out + k * 4 + j) = c0.val[k][j];
+                }
+            }
+            if(id.y() + 1 < height_out)
+            {
+                left_over = left_over_value;
+                for(auto k = 0; k < 4 && left_over; ++k)
+                {
+                    for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                    {
+                        *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+                    }
+                }
+                if(id.y() + 2 < height_out)
+                {
+                    left_over = left_over_value;
+                    for(auto k = 0; k < 4 && left_over; ++k)
+                    {
+                        for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                        {
+                            *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+                        }
+                    }
+                    if(id.y() + 3 < height_out)
+                    {
+                        left_over = left_over_value;
+                        for(auto k = 0; k < 4 && left_over; ++k)
+                        {
+                            for(auto j = 0; j < 4 && left_over; ++j, --left_over)
+                            {
+                                *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+                            }
+                        }
+                    }
+                }
+            }
+        }
+
+    },
+    ina, inb, out);
+}
+
+Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8, DataType::U8);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
+
+    TensorShape in0_shape = src0->tensor_shape();
+    TensorShape in1_shape = src1->tensor_shape();
+    TensorShape out_shape = dst->tensor_shape();
+
+    // Check vector-by-matrix case
+    if(out_shape[1] == 1)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1], "The number of input0's columns must be equal to input1's rows");
+    }
+    else
+    {
+        in0_shape.collapse(2);
+        in1_shape.collapse(2);
+        out_shape.collapse(2);
+
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor");
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16");
+    }
+
+    return Status{};
+}
+} // namespace
+
+void CpuGemmLowpMatrixMultiplyKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
+{
+    ARM_COMPUTE_UNUSED(src0);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst));
+
+    TensorShape in1_shape = src1->tensor_shape();
+    in1_shape.collapse(2);
+
+    _slide_matrix_b = in1_shape[2] != 1;
+
+    constexpr unsigned int num_elems_processed_per_iteration_x = 16;
+    constexpr unsigned int num_elems_processed_per_iteration_y = 4;
+
+    Window win;
+    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
+    if((dst->dimension(1) == 1))
+    {
+        // Configure kernel window
+        win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x));
+    }
+    else
+    {
+        win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+    }
+
+    ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpMatrixMultiplyKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst));
+    return Status{};
+}
+
+void CpuGemmLowpMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    ARM_COMPUTE_UNUSED(info);
+    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+    auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+    auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+    auto dst  = tensors.get_tensor(TensorType::ACL_DST);
+
+    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path
+    if((dst->info()->dimension(1) == 1))
+    {
+        const auto width_matrix_a = static_cast<int>(src0->info()->dimension(0));
+        const auto width_matrix_b = static_cast<int>(src1->info()->dimension(0));
+        const auto width_out      = static_cast<int>(dst->info()->dimension(0));
+        const auto in_b_stride    = static_cast<int>(src1->info()->strides_in_bytes()[1] / data_size_from_type(src1->info()->data_type()));
+
+        // The implementation computes 16 elements per iteration
+        const int window_start_x = 16 * info.thread_id;
+        const int window_step_x  = 16 * info.num_threads;
+        // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
+        const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
+
+        Window win_out(window);
+        win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+        win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+        Window win_a(window);
+        win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+        Window win_b;
+        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        if(src1->info()->num_dimensions() >= 3)
+        {
+            win_b = window;
+        }
+        win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+        win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+        Iterator ina(src0, win_a);
+        Iterator inb(src1, win_b);
+        Iterator out(dst, win_out);
+
+        switch(src0->info()->data_type())
+        {
+            case DataType::S8:
+            case DataType::QASYMM8_SIGNED:
+            {
+                vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
+                break;
+            }
+            case DataType::U8:
+            case DataType::QASYMM8:
+            {
+                vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
+                break;
+            }
+            default:
+            {
+                ARM_COMPUTE_ERROR("Not supported");
+                break;
+            }
+        }
+    }
+    else
+    {
+        const size_t in_b_stride = src1->info()->strides_in_bytes()[1];
+        const int    width_b     = src1->info()->dimension(0);
+
+        // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
+        Window win_a(window);
+        win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+        win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
+
+        // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
+        Window win_b;
+        // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+        if(_slide_matrix_b)
+        {
+            win_b = window;
+        }
+        win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
+        win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+        // The step x and step y for the output matrix has been already set using in configure()
+        Iterator ina(src0, win_a);
+        Iterator inb(src1, win_b);
+        Iterator out(dst, window);
+
+        switch(src0->info()->data_type())
+        {
+            case DataType::S8:
+            case DataType::QASYMM8_SIGNED:
+            {
+                matrix_multiply_s8(ina, inb, out, width_b, *dst->info(), window);
+                break;
+            }
+            case DataType::U8:
+            case DataType::QASYMM8:
+            {
+                matrix_multiply_u8(ina, inb, out, width_b, *dst->info(), window);
+                break;
+            }
+            default:
+            {
+                ARM_COMPUTE_ERROR("Not supported");
+                break;
+            }
+        }
+    }
+}
+
+const char *CpuGemmLowpMatrixMultiplyKernel::name() const
+{
+    return "CpuGemmLowpMatrixMultiplyKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute
\ No newline at end of file